Acknowledgement
Supported by : NSFC, CSC, Shanghai Center for Mathematical Sciences
References
- C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239 (1978), 1-31. https://doi.org/10.1090/S0002-9947-1978-0482347-9
- C. Cowen, The commutant of an analytic Toeplitz operator. II, Indiana Univ. Math. J. 29 (1980), no. 1, 1-12. https://doi.org/10.1512/iumj.1980.29.29001
- C. Cowen, An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators, J. Funct. Anal. 36 (1980), no. 2, 169-184. https://doi.org/10.1016/0022-1236(80)90098-1
-
H. Dan and H. Huang, Multiplication operators dened by a class of polynomials on
$L^^2_a({\mathbb{D}}^2)$ , Integral Equations Operator Theory 80 (2014), no. 4, 581-601. https://doi.org/10.1007/s00020-014-2176-3 - R. Douglas, M. Putinar, and K. Wang, Reducing subspaces for analytic multipliers of the Bergman space, J. Funct. Anal. 263 (2012), no. 6, 1744-1765. https://doi.org/10.1016/j.jfa.2012.06.008
- R. Douglas, S. Sun, and D. Zheng, Multiplication operators on the Bergman space via analytic continuation, Adv. Math. 226 (2011), no. 1, 541-583. https://doi.org/10.1016/j.aim.2010.07.001
- K. Guo and H. Huang, On multiplication operators on the Bergman space: Similarity, unitary equivalence and reducing subspaces, J. Operator Theory 65 (2011), no. 2, 355-378.
- K. Guo and H. Huang, Multiplication operators dened by covering maps on the Bergman space: the connection between operator theory and von Neumann algebras, J. Funct. Anal. 260 (2011), no. 4, 1219-1255. https://doi.org/10.1016/j.jfa.2010.11.002
- K. Guo and H. Huang, Geometric constructions of thin Blaschke products and reducing subspace prob-lem, Proc. London Math. Soc. 109 (2014), no. 4, 1050-1091. https://doi.org/10.1112/plms/pdu027
- K. Guo and H. Huang, Multiplication operators on the Bergman space, Lecture Notes in Math. 2145, Springer, Heidelberg, 2015.
- K. Guo and X. Wang, Reducing subspaces of tensor products of weighted shifts, Sci. China Ser. A. 59 (2016), no. 4, 715-730. https://doi.org/10.1007/s11425-015-5089-y
- K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962.
- H. Huang and D. Zheng, Multiplication operators on the Bergman spaces of polygons, preprint.
- Y. Lu and X. Zhou, Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk, J. Math. Soc. Japan, 62 (2010), no. 3, 745-765. https://doi.org/10.2969/jmsj/06230745
- C. MacDuffee, The Theory of Matrices, Berlin, Springer, 2nd, 1946.
- Y. Shi and Y. Lu, Reducing subspaces for Toeplitz operators on the polydisk, Bull. Korean Math. Soc. 50 (2013), no. 2, 687-696. https://doi.org/10.4134/BKMS.2013.50.2.687
- S. Sun, D. Zheng, and C. Zhong, Classication of reducing subspaces of a class of multiplication operators via the Hardy space of the bidisk, Canad. J. Math. 62 (2010), no. 2, 415-438. https://doi.org/10.4153/CJM-2010-026-4
- J. Thomson, The commutant of a class of analytic Toeplitz operators. II, Indiana Univ. Math. J. 25 (1976), no. 8, 793-800. https://doi.org/10.1512/iumj.1976.25.25063
- J. Thomson, The commutant of a class of analytic Toeplitz operators, Amer. J. Math. 99 (1977), no. 3, 522-529. https://doi.org/10.2307/2373929
- A. Tikaradze, Multiplication operators on the Bergman spaces of pseudoconvex domains, New York J. Math. 21 (2015), 1327-1345.
-
X. Wang, H. Dan, and H. Huang, Reducing subspaces of multiplication operators with the symbol
${\alpha}z^k+{\beta}w^l\;on\;L^^2_a({\mathbb{D}}^2)$ , Sci. China Ser. A. 58 (2015), no. 10, 2167-2180.