• 제목/요약/키워드: the conditional Wiener integral

검색결과 48건 처리시간 0.021초

CONDITIONAL FORUIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT FOR A VECTOR VALUED CONDITIONING FUNCTION

  • Kim, Bong Jin
    • Korean Journal of Mathematics
    • /
    • 제30권2호
    • /
    • pp.239-247
    • /
    • 2022
  • Let C0[0, T] denote the Wiener space, the space of continuous functions x(t) on [0, T] such that x(0) = 0. Define a random vector $Z_{\vec{e},k}:C_0[0,\;T] {\rightarrow}{\mathbb{R}}^k$ by $$Z_{\vec{e},k}(x)=({\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;e_1(t)dx(t),\;{\ldots},\;{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;ek(t)dx(t))$$ where ej ∈ L2[0, T] with ej ≠ 0 a.e., j = 1, …, k. In this paper we study the conditional Fourier-Feynman transform and a conditional convolution product for a cylinder type functionals defined on C0[0, T] with a general vector valued conditioning functions $Z_{\vec{e},k}$ above which need not depend upon the values of x at only finitely many points in (0, T] rather than a conditioning function X(x) = (x(t1), …, x(tn)) where 0 < t1 < … < tn = T. In particular we show that the conditional Fourier-Feynman transform of the conditional convolution product is the product of conditional Fourier-Feynman transforms.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION

  • Jae Gil Choi;Sang Kil Shim
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1221-1235
    • /
    • 2023
  • In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH VECTOR-VALUED CONDITIONING FUNCTION

  • Ae Young Ko;Jae Gil Choi
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권2호
    • /
    • pp.155-167
    • /
    • 2023
  • In this paper, we use a vector-valued conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functionals which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.

EVALUATION OF SOME CONDITIONAL WIENER INTEGRALS

  • Chang, Kun-Soo;Chang, Joo-Sup
    • 대한수학회보
    • /
    • 제21권2호
    • /
    • pp.99-106
    • /
    • 1984
  • J. Yeh has recently introduced the concept of conditional Wiener integrals which are meant specifically the conditional expectation E$^{w}$ (Z vertical bar X) of a real or complex valued Wiener integrable functional Z conditioned by the Wiener measurable functional X on the Wiener measure space (A precise definition of the conditional Wiener integral and a brief discussion of the Wiener measure space are given in Section 2). In [3] and [4] he derived some inversion formulae for conditional Wiener integrals and evaluated some conditional Wiener integrals E$^{w}$ (Z vertical bar X) conditioned by X(x)=x(t) for a fixed t>0 and x in Wiener space. Thus E$^{w}$ (Z vertical bar X) is a real or complex valued function on R$^{1}$. In this paper we shall be concerned with the random vector X given by X(x) = (x(s$_{1}$),..,x(s$_{n}$ )) for every x in Wiener space where 0=s$_{0}$ $_{1}$<..$_{n}$ =t. In Section 3 we will evaluate some conditional Wiener integrals E$^{w}$ (Z vertical bar X) which are real or complex valued functions on the n-dimensional Euclidean space R$^{n}$ . Thus we extend Yeh's results [4] for the random variable X given by X(x)=x(t) to the random vector X given by X(x)=(x(s$_{1}$).., x(s$_{n}$ )).

  • PDF

GENERALIZED CONDITIONAL INTEGRAL TRANSFORMS, CONDITIONAL CONVOLUTIONS AND FIRST VARIATIONS

  • Kim, Bong Jin;Kim, Byoung Soo
    • Korean Journal of Mathematics
    • /
    • 제20권1호
    • /
    • pp.1-18
    • /
    • 2012
  • We study various relationships that exist among generalized conditional integral transform, generalized conditional convolution and generalized first variation for a class of functionals defined on K[0, T], the space of complex-valued continuous functions on [0, T] which vanish at zero.

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].

AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제57권2호
    • /
    • pp.451-470
    • /
    • 2020
  • Let C[0, T] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. For a partition 0 = t0 < t1 < ⋯ < tn < tn+1 = T of [0, T], define Xn : C[0, T] → ℝn+1 by Xn(x) = (x(t0), x(t1), …, x(tn)). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function Xn which has a drift and does not contain the present position of paths. As applications of the formula with Xn, we evaluate the Radon-Nikodym derivatives of the functions ∫0T[x(t)]mdλ(t)(m∈ℕ) and [∫0Tx(t)dλ(t)]2 on C[0, T], where λ is a complex-valued Borel measure on [0, T]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C[0, T].

A TIME-INDEPENDENT CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • 호남수학학술지
    • /
    • 제35권2호
    • /
    • pp.179-200
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $X_n:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ by $Xn(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t$ is a partition of $[0,t]$. In the present paper, using a simple formula for the conditional expectation given the conditioning function $X_n$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions which have the form $$f((v_1,x),{\cdots},(v_r,x))\;for\;x{\in}C[0,t]$$, where {$v_1,{\cdots},v_r$} is an orthonormal subset of $L_2[0,t]$ and $f{\in}L_p(\mathbb{R}^r)$. We then investigate several relationships between the conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONDITIONAL CONVOLUTION PRODUCTS

  • Park, Chull;David Skoug
    • 대한수학회지
    • /
    • 제38권1호
    • /
    • pp.61-76
    • /
    • 2001
  • In this paper we define the concept of a conditional Fourier-Feynman transform and a conditional convolution product and obtain several interesting relationships between them. In particular we show that the conditional transform of the conditional convolution product is the product of conditional transforms, and that the conditional convolution product of conditional transforms is the conditional transform of the product of the functionals.

  • PDF