Browse > Article
http://dx.doi.org/10.4134/JKMS.j190133

AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS  

Cho, Dong Hyun (Department of Mathematics Kyonggi University)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.2, 2020 , pp. 451-470 More about this Journal
Abstract
Let C[0, T] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. For a partition 0 = t0 < t1 < ⋯ < tn < tn+1 = T of [0, T], define Xn : C[0, T] → ℝn+1 by Xn(x) = (x(t0), x(t1), …, x(tn)). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function Xn which has a drift and does not contain the present position of paths. As applications of the formula with Xn, we evaluate the Radon-Nikodym derivatives of the functions ∫0T[x(t)]mdλ(t)(m∈ℕ) and [∫0Tx(t)dλ(t)]2 on C[0, T], where λ is a complex-valued Borel measure on [0, T]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C[0, T].
Keywords
Analogue of Wiener measure; conditional Wiener integral; Feynman integral; translation theorem; Wiener integral; Wiener space;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. (2) 45 (1944), 386-396. https://doi.org/10.2307/1969276   DOI
2 D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3795-3811. https://doi.org/10.1090/S0002-9947-08-04380-8   DOI
3 D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications. II, Czechoslovak Math. J. 59(134) (2009), no. 2, 431-452. https://doi.org/10.1007/s10587-009-0030-6   DOI
4 D. H. Cho, Measurable functions similar to the Ito integral and the Paley-Wiener-Zygmund integral over continuous paths, Filomat 32 (2018), no. 18, 6441-6456.   DOI
5 D. H. Cho, An evaluation formula for Radon-Nikodym derivatives similar to conditional expectations over paths, Mathematica Slovaca (2019), submitted.
6 M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819. https://doi.org/10.4134/JKMS.2002.39.5.801   DOI
7 C. Park and D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), no. 2, 381-394. http://projecteuclid.org/euclid.pjm/1102688300   DOI
8 K. S. Ryu, The simple formula of conditional expectation on analogue of Wiener measure, Honam Math. J. 30 (2008), no. 4, 723-732. https://doi.org/10.5831/HMJ.2008.30.4.723   DOI
9 K. S. Ryu, The translation theorem on the generalized analogue of Wiener space and its applications, J. Chungcheong Math. Soc. 26 (2013), no. 4, 735-742.   DOI
10 K. S. Ryu, The generalized analogue of Wiener measure space and its properties, Honam Math. J. 32 (2010), no. 4, 633-642. https://doi.org/10.5831/HMJ.2010.32.4.633   DOI
11 J. Yeh, Transformation of conditional Wiener integrals under translation and the Cameron-Martin translation theorem, Tohoku Math. J. (2) 30 (1978), no. 4, 505-515. https://doi.org/10.2748/tmj/1178229910   DOI