Journal of Natural Science Pai Chai University, Korea Vol. 11, No. 1 : 1 5, 1998

Conditional Yeh-Wiener Integral

Sung Soo Kim Department of Applied Mathematics, Pai Chai University

Yeh-Wiener

We introduce the conditional Yeh-Wiener integral, verify the existence of Yeh-Wiener integral, and obtain inversion formulae for conditional Yeh-Wiener integral. Using these, we can evaluate conditional Yeh-Wiender integral

Yeh-Wiener Yeh-Wiener Yeh-Wiener

Key words : Yeh-Wiener measure space, B - measurable, P_x - integrable, conditional Yeh-Wiener integral.

. Introduction

Let R^2 is two-dimensional Euclidean space, p and q some fixed positive real numbers. Let Q be the set defined by

$$Q = \{ (s, t) \in \mathbb{R}^2 : 0 \le s \le p, 0 \le t \le q \}$$

And Let $C_2(Q)$ be the collection of all real valued continuous functions x defined on Q such that x(0, t) = x(x, 0) = 0.

We can construct the Yeh-Wiener measure ($C_2(Q), y, m_y$) space such that a set of points

 $\Pi = \{ (s_0, t_0), (s_0, t_1), \cdots, (s_0, t_n), \cdots, (s_m, t_n) \}$

satisfying $0 = s_0 < s_1 < \cdots < s_m \le p$ and $0 = t_0 < t_1 < \cdots < t_n \le q$.

Let B (R^{mn}) be the σ - algebra of Borel set E in the mn-dimensional Euclidean space R^{mn} , \mathcal{F}_{mn} σ - algebra of sets.

$$\{ x \in C_2(Q) : (x(s_1, t_1), \cdots, x(s_m, t_n)) \in E \},\$$

where, $E \in B(R^{mn}).$

 $\mathcal{F} = \bigcup \mathcal{F}_{mn}$, where the union over all partitions of Q. This \mathcal{F} is an algebra of

subsets in $C_2(Q)$.

We obtain the σ -algebra y of Caratheodory measurable subsets of $C_2(Q)$ with respect to the outer measure induced by the probability measure on F.

A real valued functional \mathcal{F} on $C_2(Q)$ is said to be Yeh-Wiener measurable if it is y - measurable (measurable trans formation from $(C_2(Q), y)$ into $(R^1, \mathbf{B}(R^1))$). Its integral with respect to m_y , if it exists, is called its Yeh-Wiener integral which is denoted by $E^y(\mathcal{F})$, we write

$$E^{y}(F) = \int_{C_{2}(Q)} \mathcal{F}(x) dm_{y}(x)$$

We say that \mathcal{F} is Yeh-Wiener integrable or m_y - integrable when the Yeh-Wiener integral of \mathcal{F} , $E^y(\mathcal{F})$, exists and infinite.

The Yeh-Wiener measurability and Yeh-Wiener integrability of a complex valued functional on $C_2(Q)$ are defined in terms of its real and imaginary parts.

Definition 1.1 Let $(C_2(Q), y, m_y)$ be Yeh-Wiener measure space, X a real valued Yeh-Wiener measurable functional on $(C_2(Q), y, m_y)$. Define a probability measure P_x on $(R^1, B(R^1))$ determined by x as follows :

$$P_{x}(\mathbf{B}) = m_{y}(X^{-1}(\mathbf{B}))$$

for every B in B (R^{1}) .

This P_x is called the probability distribution of X.

Theorem 1.1 Let X and Z be the real valued Yeh-Wiener measurable functions on the Yeh-Wiener space $(C_2(Q), y, m_y)$ with $E^y(|Z|) < \infty$. Then there exists a B (R^1) - measurable and P_x - integrable function f on R^1 such that

$$\int_{X^{-1}(B)} Z(x) dm_y(x) = \int_B f(w) dP_x(w)$$

for every B in $B(R^{1})$.

If f and g are B (R^{1}) - measurable and P_{x} - integrable functions on $(R^{1}, B(R^{1}), P_{x})$ which satisfy this expression then f(w) = g(w) for a.e. w in $(R^{1}, B(R^{1}), P_{x})$.

(**Proof**) Let a set function μ on B (R^{-1}) be

$$\mu(\mathbf{B}) = \int_{X^{-1}(B)} Z(x) dm_{y}(x)$$

for every B in B (R^{1}) . Then μ is the finite signed measure on B (R^{1}) and μ is absolutely continuous with respect to P_{x} . There exists a real valued B (R^{1}) -measurable and P_{x} - integrable function f such that

$$\mu(B) = \int_{B} f(w) dP_{x}(w)$$

for every B in B (R^{1}) . Hence

$$\int_{X^{-1}(B)} Z(x) dm_y(x) = \int_B f(w) dP_x(w)$$

for every B in B (R^{1}) . By the hypothesis,

$$\int_{B} f(w) dP_{x}(w) = \int_{B} g(w) dP_{x}(w)$$

for every B in B (R^{1}) , and hence

$$f(w) = g(w)$$
 for a.e. w in (R^{\perp}, \mathbf{B})
 $(R^{\perp}), P_x).$

II. Conditional Yeh-Wiener Integral

We introduce the definition of conditional Yeh-Wiener integral and evaluate conditional Yeh-Wiener integral for two Yeh-Wiener integrable functional.

Definition 2.1 Let X and Z be the real valued Yeh-Wiener measurable functions on the Yeh-Wiener measure space $(C_2(Q), y, m_y)$ with $E^y(|Z|) < \infty$. The equivalence class of **B** (R^1) -measurable and P_x - integrable functions f on R^1 satisfying

$$\int_{X^{-1}(B)} Z(x) dm_{y}(x) = \int_{B} f(w) dP_{x}(w)$$

for every $B \in \mathbf{B}(R^{-1})$ is called the conditional Yeh-Wiener integral of Z given x and is denoted by $E^{y}(Z \mid x)$.

We use $E^{y}(Z \mid X)$ to mean either equivalence class of all functions f or a version in it depending on the contex t.

Thus we have

$$\int_{X^{-1}(B)} Z(x) dm_{y}(x) = \int_{B} E^{y}(Z \mid x)(w) dP_{x}(w)$$

for every B in B (R^{1}) .

The notation " $\stackrel{*}{=}$ " means that the

existence of one side in an equality implies that of the other as well as the equality of the two.

Proportion 2.1 Suppose that X and Y are two measurable transformations from $(C_2(Q), y)$ into $(R^1, \mathbf{B}(R^1))$ with $E^y(|Y|) < \infty$. Then for an arbitrary measurable transformation g from $(R^1, \mathbf{B}(R^1))$ into itself, we have

$$E^{y}((g \cdot x) Y) = {}^{*} \int_{R^{1}} g(w) E^{y}(Y \mid X)(w) dP_{x}(w)$$

(**Proof**) Let μ be a set function on y defined by

$$\mu(B) = \int_B Y(x) dm_y(x)$$

for every $B \in y$.

For the real valued random variables $g \cdot X$ an Y on $(C_2(Q), y, m_y)$

$$E^{y}((g \cdot x) Y) = \int_{C_{2}(Q)} g(X(x)) Y(x) dm_{y}(x)$$

$$\stackrel{*}{=} \int_{C_{2}(Q)} g(X(x)) Y(x) d\mu(x)$$

$$\stackrel{*}{=} \int_{R^{1}} g(w) d\mu \cdot X^{-1}(w)$$

For every $A \in B(R^1)$

$$\mu \cdot X^{-1}(A) = \mu(X^{-1}(A))$$

= $\int_{X^{-1}(A)} Y(x) dm_y(x)$
= $\int_A E^y(Y \mid X)(w) dP_x(w)$

Hence,

$$\frac{d\mu \cdot X^{-1}(w)}{dP_x} = E^y(Y \mid X)(w)$$

We have

$$E^{y}((g \cdot x) Y) \stackrel{*}{=} \int_{R^{1}} g(w) E^{y}(Y \mid X)(w) dP_{x}(w)$$

Now we introduce some properties for the proof of following theorems.

Suppose that X and Y are two measurable transformations from $(C_2(Q), y)$ into $(R^1, \mathbf{B}(R^1))$ with $E^y(|Y|) < \infty$, and P_x is absolutely continuous with respect to m on $(R^1, \mathbf{B}(R^1))$.

Let J_{α}^{w} be a function on R^{1} defined by

$$J_{\alpha}^{w}(\hat{\xi}) = \begin{cases} 1/2\alpha &, \text{ for } \hat{\xi} \in (w - \alpha, w + \alpha) \\ 0 &, \text{ for } \hat{\xi} \in (w - \alpha, w + \alpha) \end{cases}$$

for every $w \in R^{-1}$, $\alpha > 0$.

Substituting J_{α}^{w} for g in proposition 2.1, we have

$$\begin{split} & \lim_{\alpha \to 0} E^{y} \left(\left(J \stackrel{w}{\alpha} \cdot X \right) Y \right) \\ & = \lim_{\alpha \to 0} \int_{R^{1}} J \stackrel{w}{\alpha}(x) E^{y} \left(Y \mid X \right)(x) \frac{dP_{x}(x)}{dm} dm(x) \end{split}$$

Here $E^{y}(Y \mid X)(x) \frac{dP_{x}(x)}{dm}$ is *m*-integrable on R^{-1} .

Then there exists a version of $E^{y}(Y \mid X) - \frac{dP_{x}}{dm}$ such that

$$E^{y}(Y \mid X)(w) \frac{dP_{x}(w)}{dm} = \lim_{a \to 0} E^{y}((J_{a}^{w} \cdot X)Y)$$

for a.e. $w \in (R^{1}, B(R^{1}), m)$. And, by the linearity of E^{y} ,

 $E^{y}(e^{iux}Y) = E^{y}((\cos ux)Y) + iE^{y}((\sin ux)Y)$

Applying proposition 2.1, we have

$$E^{y}(e^{iux}Y) = \int_{R^{-1}} e^{iuw} E^{y}(Y \mid X)(w) dP_{x}(w)$$

for every $u \in \mathbb{R}^{-1}$.

Theorem 2.1 Suppose that X and Y are measurable transformations from $(C_2(Q), y, m_y)$ into $(R^1, \mathbf{B}(R^1))$ such that $E^y(|Y|) < \infty$, and P_x is absolutely continuous with respect to m on $(R^1, \mathbf{B}(R^1))$. Then there exists a version of $E^y(Y|X) \frac{dP_x}{dm}$ such that

$$E^{y}(Y(X))(w) \frac{dP_{x}(w)}{dm} = \lim_{n \to 0} \frac{1}{2} \pi \int_{(-n,n)} \left(1 - \frac{|u|}{n}\right) e^{-iuw} E^{y}(e^{iux}Y) dm(u))$$

for a.e. $w \in (R^{1}, B(R^{1}), m)$.

(**Proof**) For every
$$u \in \mathbb{R}^{-1}$$
,

$$E^{y}(e^{iux} Y) = \int_{R^{1}} e^{iuw} E^{y}(Y \mid X)(w) \frac{dP_{x}(w)}{dm}$$
$$E^{y}(Y \mid X)(w) \frac{dP_{x}(w)}{dm} \text{ is } m \text{ - integrable}$$

on R^{1} .

Here $E^{y}(e^{iux}Y)$ is Fourier transform of the *m*- integrable function $E^{y}(Y \mid X)(w) - \frac{dP_{x}(w)}{dm}$. Thus the proof is established.

Theorem 2.2 The measurable transformations X, Y, and P_x are as in theorem 2.1. And suppose that $E^y(e^{iux}Y)$ is an m-integrable function of $u \in \mathbb{R}^1$. Then there exists $E^y(Y \mid X) \frac{dP_x}{dm}$ such that

$$E^{y}(Y \mid X)(w) - \frac{dP_{x}(w)}{dm} = \frac{1}{2\pi} \int_{R^{1}} e^{-iuw} E^{y}(e^{iux}Y) dm(u)$$

for a.e. $w \in (R^{1}, B(R^{1}), m)$.

(**Proof**) For every $u \in \mathbb{R}^{1}$

$$E^{y}(e^{iux} Y) = \int_{R^{1}} e^{iuw} E^{y}(Y \mid X)(w) \frac{dP_{x}(w)}{dm} dm(w)$$

Let μ be a set function on B (R^{1}) defined by

$$\mu(\mathbf{B}) = \int_{B} E^{y}(Y \mid X)(w) dP_{x}(w)$$

for every $B \in B(R^1)$.

Since, $E^{y}(Y \mid X)$ is P_{x} - integrable on R^{1} , μ is a finite signed measure on $(R^{1}, B(R^{1}))$ which is absolutely continuous with respect to P_{x} .

Since, $E^{y}(e^{iux}Y)$ is an m - integrable function of u on R^{-1} , we have

$$\frac{d\mu(w)}{dm} = \frac{1}{2\pi} \int_{R^{\perp}} e^{-iuw} E^{y}(e^{iux}Y) dm(u))$$

for a.e. $w \in (R^{1}, \mathbf{B}(R^{1}), m)$. And then

$$\frac{d\mu(w)}{dm} = E^{y}(Y \mid X)(w) \frac{dP_{x}(w)}{dm}$$

We can evaluate conditional Yeh-Wiener integral for Yeh-Wiener integrable function conditioned

by X(x) = x(s, t) for $x \in C_2(Q)$ where $Q = [0, s] \times [0, t]$ for some fixed positive real numbers s and t.

Let
$$Y(x) = \int_0^t \int_0^s \{x(u,v)\}^2 du \, dv$$
, we
can evaluate $E^y \left[J_\alpha^w (x(s,t)) \{x(u,v)\}^2 \right]$,

 $E^{y}(Y \mid X)(w)$.

. Acknowledgment

This work was supported by Paichai University (Central Research Fund, 1996).

. References

- Laha, R. G. and V. K. Rohatgi. 1979. Probability Theory. John Wily & Sons. Inc.
- Rudin, W. 1974. Real and Complex Analysis. MacGraw - Hill.
- Yeh, J. 1973. Stochastic Process and the Wiener Integral. Marcel Dekker. Inc. New York.
- Yeh, J. 1975. Inversion of Conditional Wiener Integrals. Pacfic J. Math., 59.
- Yeh, J. 1963. Cameron-Martin Translation Theorems in the Wiener space of functions of two variables. *Trans, Amer, Math. Soc.*, 107.