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AN EVALUATION FORMULA FOR A GENERALIZED

CONDITIONAL EXPECTATION WITH TRANSLATION

THEOREMS OVER PATHS

Dong Hyun Cho

Abstract. Let C[0, T ] denote an analogue of Wiener space, the space

of real-valued continuous functions on the interval [0, T ]. For a partition

0 = t0 < t1 < · · · < tn < tn+1 = T of [0, T ], define Xn : C[0, T ]→ Rn+1

by Xn(x) = (x(t0), x(t1), . . . , x(tn)). In this paper we derive a simple

evaluation formula for Radon-Nikodym derivatives similar to the condi-

tional expectations of functions on C[0, T ] with the conditioning function
Xn which has a drift and does not contain the present position of paths.

As applications of the formula with Xn, we evaluate the Radon-Nikodym

derivatives of the functions
∫ T
0 [x(t)]mdλ(t)(m ∈ N) and [

∫ T
0 x(t)dλ(t)]2

on C[0, T ], where λ is a complex-valued Borel measure on [0, T ]. Finally
we derive two translation theorems for the Radon-Nikodym derivatives of

the functions on C[0, T ].

1. Introduction and an analogue of the Wiener space

Let C0[0, T ] denote the Wiener space, the space of real-valued continuous
functions x on the interval [0, T ] with x(0) = 0. Calculations involving the con-
ditional Wiener integrals of the functions on C0[0, T ] are important in the study
of Feynman integral. In particular, when 0 = t0 < t1 < · · · < tn < tn+1 = T
is a partition of [0, T ] and ξj ∈ R for j = 0, 1, . . . , n, the conditional Wiener
integral of a time integral in which the paths pass through the point ξj at
each time tj for j = 0, 1, . . . , n, where tj is not the present time T , is very
useful in the Feynman integration theory. But, in general, the Wiener inte-
gral and the conditional Wiener integral on C0[0, T ] is not invariant under
translation [1, 11]. In [7], Park and Skoug derived a simple formula for con-
ditional Wiener integrals containing the time integral with the conditioning
function (x(t1), . . . , x(tn), x(tn+1)) for x ∈ C0[0, T ] which contains the present
positions of the paths in C0[0, T ]. In their simple formula, they expressed the
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conditional Wiener integral directly in terms of ordinary Wiener integral and
derived a translation theorem for the conditional Wiener integrals on C0[0, T ].

More generally, let C[0, T ] denote the space of continuous real-valued func-
tions on [0, T ]. Im and Ryu [6, 9] introduced a finite positive measure wϕ on
C[0, T ] which generalizes the Wiener space C0[0, T ]. When wϕ is a probability
measure, the author [2] and Ryu [8] derived separately the same simple for-
mula for a generalized conditional Wiener integral of the functions on C[0, T ]
with the conditioning function Xn+1(x) = (x(t0), x(t1), . . . , x(tn), x(tn+1)) for
x ∈ C[0, T ]. They then evaluated the generalized conditional Wiener integrals
of various functions which are interested in both Feynman integral and quan-
tum mechanics. In particular, Ryu [10] derived a translation theorem for the
generalized analogue of Wiener integral and established properties of the gener-
alized analogue of Wiener measure from it. Furthermore, the author [3] derived
another simple formula for the generalized conditional Wiener integrals with
the conditioning function Xn(x) = (x(t0), x(t1), . . . , x(tn)) for x ∈ C[0, T ] and
he [2, 3] derived translation theorems for the generalized conditional Wiener
integrals on C[0, T ] with two conditioning functions Xn and Xn+1. Note that
Xn+1 contains the present positions of paths in C[0, T ] and Xn does not. In
both cases, the motion in the formulas has the mean zero with the variance
function β(t) = t on [0, T ], and it has no drifts. In addition, the author [5]
derived a simple evaluation formula for Radon-Nikodym derivatives similar to
the generalized conditional Wiener integrals of functions on C[0, T ] with the
conditioning function Xn+1 which has a drift and an initial weight. Using the
formula, he evaluated various Radon-Nikodym derivatives of the functions on
C[0, T ] containing the time integral.

In this paper, using the formula with Xn+1 in [5], we derive another simple
evaluation formula for Radon-Nikodym derivatives similar to the conditional
expectations of functions on C[0, T ] with the conditioning function Xn which
has a drift and does not contain the present position of paths. As applica-
tions of the formula with Xn, we evaluate the Radon-Nikodym derivatives of

the functions given by
∫ T

0
[x(t)]mdλ(t)(m ∈ N) and [

∫ T
0
x(t)dλ(t)]2 on C[0, T ],

where λ is a complex-valued Borel measure on [0, T ]. Finally we derive two
translation theorems for the Radon-Nikodym derivatives of the functions on
C[0, T ] with the conditioning functions Xn and Xn+1.

We now introduce a finite measure over paths with its properties. Let α, β :
[0, T ] → R be two functions, where β is continuous and strictly increasing.
Let ϕ be a positive finite measure on the Borel class B(R) of R and mL be
the Lebesgue measure on B(R). For ~tn = (t0, t1, . . . , tn) with 0 = t0 < t1 <
· · · < tn ≤ T , let J~tn : C[0, T ] → Rn+1 be the function given by J~tn(x) =

(x(t0), x(t1), . . . , x(tn)). For
∏n
j=0Bj ∈ B(Rn+1), the subset J−1

~tn
(
∏n
j=0Bj) of

C[0, T ] is called a cylinder set I and let I be the set of all such cylinder sets I.
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Define a pre-measure mα,β;ϕ on I by

mα,β;ϕ(I) =

∫
B0

∫
∏n

j=1 Bj

Wn(~tn, ~un, u0)dmn
L(~un)dϕ(u0),

where for ~un = (u1, . . . , un) ∈ Rn and u0 ∈ R,

Wn(~tn, ~un, u0) =

[
1∏n

j=1 2π[β(tj)− β(tj−1)]

] 1
2

(1)

× exp

{
−1

2

n∑
j=1

[uj − α(tj)− uj−1 + α(tj−1)]2

β(tj)− β(tj−1)

}
.

Let B(C[0, T ]) denote the Borel σ-algebra of C[0, T ] with the supremum norm.
Then B(C[0, T ]) coincides with the smallest σ-algebra generated by I and there
exists a unique positive finite measure wα,β;ϕ on B(C[0, T ]) with wα,β;ϕ(I) =
mα,β;ϕ(I) for all I ∈ I. This measure wα,β;ϕ is called an analogue of a gener-
alized Wiener measure on (C[0, T ],B(C[0, T ])) according to ϕ [9,10]. From the
definition of wα,β;ϕ, we have the following theorem which is useful in the next
sections [6].

Theorem 1.1. If f : Rn+1 → C is a Borel measurable function, then∫
C[0,T ]

f(x(t0), x(t1), . . . , x(tn))dwα,β;ϕ(x)

∗
=

∫
Rn+1

f(u0, u1, . . . , un)Wn(~tn, ~un, u0)dmn
L(~un)dϕ(u0),

where
∗
= means that if either side exists, then both sides exist and they are

equal.

Let m be a positive integer, let X : C[0, T ] → Rm be Borel measurable, let
F : C[0, T ]→ C be integrable and letmX be the measure on the Borel σ-algebra
B(Rm) of Rm induced by X. Let D = {X−1(B) : B ∈ B(Rm)} and let wD(E) =
wα,β;ϕ(E) for each E ∈ D. In view of the Radon-Nikodym theorem, there exists
a D-measurable and wD-integrable function Ψ on C[0, T ] which is unique up to
wD a.e. such that the relation

∫
E

Ψ(x)dwD(x) =
∫
E
F (x)dwα,β;ϕ(x) holds for

every E ∈ D. Moreover, there exists a Borel measurable and mX -integrable
function ψ on Rm which is unique up to mX a.e. such that Ψ(x) = (ψ ◦X)(x)
for wD a.e. x in C[0, T ]. ψ is called a generalized conditional expectation of
F given X and it is denoted by GE[F |X]. We note that if ϕ is a probability
measure on R, then mX is also a probability measure on Rm, so that GE[F |X]
is in fact the conditional expectation of F given X.

2. A simple formula for the generalized conditional expectation

In this section, we derive a simple evaluation formula for the generalized con-
ditional expectations of functions on C[0, T ] with an appropriate conditioning
function.
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Throughout the remainder of this paper, we assume that 0 = t0 < t1 <
· · · < tn < tn+1 = T is an arbitrary fixed partition of [0, T ] unless otherwise
specified. To derive the desired simple evaluation formula for a generalized
conditional expectation, we begin with letting for t ∈ [0, T ]

γ1j(t) =
β(tj)− β(t)

β(tj)− β(tj−1)
and γ2j(t) =

β(t)− β(tj−1)

β(tj)− β(tj−1)
.(2)

For a function f : [0, T ]→ R, define the polygonal function Pn+1
β (f) of f by

Pn+1
β (f)(t)(3)

=

n+1∑
j=1

χ(tj−1,tj ](t)[f(tj−1) + γ2j(t)[f(tj)− f(tj−1)]] + χ{0}(t)f(0)

for t ∈ [0, T ], where χ denotes the characteristic function. Similarly, for ~ηn+1 =
(η0, η1, . . . , ηn, ηn+1) ∈ Rn+2, the polygonal function Pn+1

β (~ηn+1) of ~ηn+1 on

[0, T ] is defined by (3) with replacing f(tj) by ηj . Then both Pn+1
β (f) and

Pn+1
β (~ηn+1) belong to C[0, T ], and Pn+1

β (f)(tj) = f(tj), P
n+1
β (~ηn+1)(tj) = ηj

at each tj . For ~ηn = (η0, η1, . . . , ηn) ∈ Rn+1, the polygonal function Pnβ (~ηn) of

~ηn on [0, tn] is defined by (3) with replacing f(tj) by ηj for j = 0, 1, . . . , n.
For s1, s2 ∈ [0, T ], let

Γj(s1, s2) = γ1j(s1)γ2j(s2)[β(tj)− β(tj−1)].(4)

For t ∈ [0, T ], let

Γ(t) =

n+1∑
j=1

χ(tj−1,tj ](t)Γj(t, t)(5)

and let Zt(f) = f(t)− Pn+1
β (f)(t) for a function f : [0, T ]→ R.

We now have the following two theorems from [5].

Theorem 2.1. Suppose that Zt is defined on C[0, T ] and let Xn+1 : C[0, T ]→
Rn+2 be given by

Xn+1(x) = (x(t0), x(t1), . . . , x(tn), x(tn+1)).(6)

Then the process {Zt : 0 ≤ t ≤ T} and Xn+1 are independent if ϕ(R) = 1.

Theorem 2.2. Let F : C[0, T ]→ C be integrable and Xn+1 be given by (6) of
Theorem 2.1. Then we have for mXn+1

a.e. ~ηn+1 ∈ Rn+2,

GE[F |Xn+1](~ηn+1) =
1

ϕ(R)

∫
C[0,T ]

F (x− Pn+1
β (x) + Pn+1

β (~ηn+1))dwα,β;ϕ(x),

where mXn+1
denotes the measure on B(Rn+2) induced by Xn+1.

Theorem 2.3. Let Xn : C[0, T ]→ Rn+1 be given by

Xn(x) = (x(t0), x(t1), . . . , x(tn))
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and let F : C[0, T ]→ C be integrable. Let mXn
be the measure induced by Xn

on B(Rn+1). Then we have for mXn
a.e. ~ηn = (η0, η1, . . . , ηn) ∈ Rn+1

GE[F |Xn](~ηn) =
1

ϕ(R)

∫
R
WT (ηn, ηn+1)

∫
C[0,T ]

F (x− Pn+1
β (x)(7)

+ Pn+1
β (~ηn+1))dwα,β;ϕ(x)dmL(ηn+1),

where ~ηn+1 = (η0, η1, . . . , ηn, ηn+1) and

WT (ηn, ηn+1) =

[
1

2π[β(T )− β(tn)]

] 1
2

exp

{
− [ηn+1 − ηn − α(T ) + α(tn)]2

2[β(T )− β(tn)]

}
.

Proof. Let mXn+1
be the measure as in Theorem 2.2. Then for any Borel subset

B of Rn+1, we have X−1
n (B) = X−1

n+1(B × R) so that we have by Theorem 2.2∫
X−1

n (B)

F (x)dwα,β;ϕ(x) =

∫
B×R

GE[F |Xn+1](~ηn+1)dmXn+1(~ηn+1)

=
1

ϕ(R)

∫
B×R

∫
C[0,T ]

F (x− Pn+1
β (x)

+ Pn+1
β (~ηn+1))dwα,β;ϕ(x)dmXn+1(~ηn+1).

By Theorem 1.1 and the Fubini’s theorem, we have for ~tn = (t0, t1, . . . , tn)∫
X−1

n (B)

F (x)dwα,β;ϕ(x)

=
1

ϕ(R)

∫
Rn+2

χB×R(~ηn+1)Wn+1((~tn, tn+1), (η1, . . . , ηn, ηn+1), η0)

∫
C[0,T ]

F (x− Pn+1
β (x) + Pn+1

β (~ηn+1))dwα,β;ϕ(x)dmn+1
L (η1, . . . , ηn, ηn+1)dϕ(η0)

=
1

ϕ(R)

∫
R

∫
Rn

χB(~ηn)Wn(~tn, (η1, . . . , ηn), η0)

∫
R
WT (ηn, ηn+1)

∫
C[0,T ]

F (x

− Pn+1
β (x) + Pn+1

β (~ηn+1))dwα,β;ϕ(x)dmL(ηn+1)dmn
L(η1, . . . , ηn)dϕ(η0)

=
1

ϕ(R)

∫
B

∫
R
WT (ηn, ηn+1)

∫
C[0,T ]

F (x− Pn+1
β (x) + Pn+1

β (~ηn+1))

dwα,β;ϕ(x)dmL(ηn+1)dmXn(~ηn),

where Wn+1 is given by (1) with replacing n by n+ 1. Now, (7) follows by the
definition of GE[F |Xn]. �

Remark 2.4. (a) Let ϕ0 = 1
ϕ(R)ϕ. Let PXn be the probability distribution of

Xn on Rn+1 and let GEϕ0 [F |Xn] denote the conditional expectation of F with
respect to wα,β;ϕ0 . Since B is a PXn null-set if and only if B is an mXn null-set,
(7) can be rewritten by

GE[F |Xn](~ηn) =

∫
R
WT (ηn, ηn+1)

∫
C[0,T ]

F (x− Pn+1
β (x)
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+ Pn+1
β (~ηn+1))dwα,β;ϕ0

(x)dmL(ηn+1)

= GEϕ0 [F |Xn](~ηn)

for PXn
a.e. ~ηn ∈ Rn+1 (or equivalently, for mXn

a.e. ~ηn ∈ Rn+1).
(b) Theorem 2.3 is an extension of Theorem 2.5 in [3].

3. Evaluations of the generalized conditional expectations

In this section, using Theorem 2.3, we evaluate the generalized conditional
expectations of various functions which are useful in the Feynman integration
theory.

The following theorem is needed to prove various results in this section [5].

Theorem 3.1. Let s1 ∈ [tj−1, tj ] and s2 ∈ [tk−1, tk] with 1 ≤ j ≤ n + 1
and 1 ≤ k ≤ n + 1. For x ∈ C[0, T ], let G(x) = x(s1)x(s2). Suppose that∫
R u

2dϕ(u) <∞. Then G is wα,β;ϕ-integrable and we have the followings:

(a) If j 6= k, then for mXn+1
a.e. ~ηn+1 ∈ Rn+2, we have

GE[G|Xn+1](~ηn+1) = [Zs1(α) + Pn+1
β (~ηn+1)(s1)][Zs2(α) + Pn+1

β (~ηn+1)(s2)].

(b) If j = k, then for mXn+1 a.e. ~ηn+1 ∈ Rn+2, we have

GE[G|Xn+1](~ηn+1) = [Zs1(α) + Pn+1
β (~ηn+1)(s1)][Zs2(α)

+ Pn+1
β (~ηn+1)(s2)] + Γj(s1 ∨ s2, s1 ∧ s2),

where s1 ∨ s2 = max{s1, s2}, s1 ∧ s2 = min{s1, s2} and Γj is given by
(4), so that Cov(Zs1 , Zs2) = Γj(s1 ∨ s2, s1 ∧ s2) if ϕ(R) = 1.

Theorem 3.2. Under the assumptions as in Theorem 3.1, we have the follow-
ings:

(a) If 1 ≤ j ≤ n and 1 ≤ k ≤ n with j 6= k, then for mXn a.e. ~ηn ∈ Rn+1

GE[G|Xn](~ηn) = [Zs1(α) + Pnβ (~ηn)(s1)][Zs2(α) + Pnβ (~ηn)(s2)].

(b) If 1 ≤ j ≤ n and 1 ≤ k ≤ n with j = k, then for mXn
a.e. ~ηn ∈ Rn+1

GE[G|Xn](~ηn) = [Zs1(α) + Pnβ (~ηn)(s1)][Zs2(α) + Pnβ (~ηn)(s2)]

+ Γj(s1 ∨ s2, s1 ∧ s2).

(c) If 1 ≤ j ≤ n and k = n+ 1, then for mXn
a.e. ~ηn = (η0, η1, . . . , ηn) ∈

Rn+1

GE[G|Xn](~ηn) = [Zs1(α) + Pnβ (~ηn)(s1)][α(s2)− α(tn) + ηn].

(d) If j = n+ 1 and k = n+ 1, then for mXn
a.e. ~ηn = (η0, η1, . . . , ηn) ∈

Rn+1

GE[G|Xn](~ηn) = [α(s1)− α(tn) + ηn][α(s2)− α(tn) + ηn]

+ γ2(n+1)(s1)[β(s2)− β(tn)] + Γj(s1 ∨ s2, s1 ∧ s2),

where γ2(n+1) is given by (2) with j = n+ 1.
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Proof. If s1 ∈ [tj−1, tj ] and s2 ∈ [tk−1, tk] with 1 ≤ j ≤ n and 1 ≤ k ≤ n, then

we have Pn+1
β (~ηn+1)(sl) = Pnβ (~ηn)(sl) for l = 1, 2, where ~ηn+1 = (~ηn, ηn+1), so

that we have (a) and (b) in this theorem by (7), (a) and (b) of Theorem 3.1.
If s2 ∈ [tn, T ], then we have∫

R
Pn+1
β (~ηn+1)(s2)WT (ηn, ηn+1)dmL(ηn+1)

=

[
1

2π[β(T )− β(tn)]

] 1
2
∫
R
[ηn + γ2(n+1)(s2)(ηn+1 − ηn)]

× exp

{
− [ηn+1 − ηn − α(T ) + α(tn)]2

2[β(T )− β(tn)]

}
dmL(ηn+1)

= ηn + γ2(n+1)(s2)[α(T )− α(tn)] = ηn − α(tn) + Pn+1
β (α)(s2).

Since Zs2(α) + ηn − α(tn) + Pn+1
β (α)(s2) = α(s2)− α(tn) + ηn, we have (c) by

Theorem 2.3 and (a) of Theorem 3.1. If s1, s2 ∈ [tn, T ], then we have∫
R
Pn+1
β (~ηn+1)(s1)Pn+1

β (~ηn+1)(s2)WT (ηn, ηn+1)dmL(ηn+1)

=

[
1

2π[β(T )− β(tn)]

] 1
2
∫
R

[ηn + γ2(n+1)(s1)(ηn+1 − ηn)][ηn + γ2(n+1)(s2)

× (ηn+1 − ηn)] exp

{
− [ηn+1 − ηn − α(T ) + α(tn)]2

2[β(T )− β(tn)]

}
dmL(ηn+1)

= η2
n + ηn[α(T )− α(tn)][γ2(n+1)(s1) + γ2(n+1)(s2)] + γ2(n+1)(s1)

× γ2(n+1)(s2)[[α(T )− α(tn)]2 + β(T )− β(tn)]

= [ηn + γ2(n+1)(s1)[α(T )− α(tn)]][ηn + γ2(n+1)(s2)[α(T )− α(tn)]]

+ γ2(n+1)(s1)[β(s2)− β(tn)]

= [ηn − α(tn) + Pn+1
β (α)(s1)][ηn − α(tn) + Pn+1

β (α)(s2)] + γ2(n+1)(s1)

× [β(s2)− β(tn)]

so that we have (d) by Theorem 2.3 and (b) of Theorem 3.1. �

Theorem 3.3. For x ∈ C[0, T ], let G1(x) = [
∫ T

0
x(t)dλ(t)]2, where λ is a finite

complex measure on the Borel class of [0, T ]. Suppose that∫ T

0

[α(t)]2d|λ|(t) <∞ and

∫
R
u2dϕ(u) <∞.(8)

Then G1 is wα,β;ϕ-integrable and for mXn+1 a.e. ~ηn+1 ∈ Rn+2, we have

GE[G1|Xn+1](~ηn+1) =

[∫ T

0

[Zt(α) + Pn+1
β (~ηn+1)(t)]dλ(t)

]2

+

∫ T

0

∫ T

0

Λ(s1 ∨ s2, s1 ∧ s2)dλ2(s1, s2),
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where Λ(s, t) =
∑n+1
j=1 χ[tj−1,tj ]2(s, t)Γj(s, t) for (s, t) ∈ [0, T ]2. In particu-

lar, if the support of λ is contained in {t0, t1, . . . , tn, tn+1}, then for mXn+1

a.e. ~ηn+1 = (η0, η1, . . . , ηn, ηn+1) ∈ Rn+2, we have GE[G1|Xn+1](~ηn+1) =

[
∑n+1
j=0 ηjλ({tj})]2.

Proof. Using the same method as used in the proof of [5, Theorem 4.3], we
can prove the integrability of G1 by (8). Now we evaluate GE[G1|Xn+1]. For
mXn+1

a.e. ~ηn+1 = (η0, η1, . . . , ηn, ηn+1) ∈ Rn+2, we have by Theorem 2.2

GE[G1|Xn+1](~ηn+1)

=

∫
C[0,T ]

[∫ T

0

[Zt(x) + Pn+1
β (~ηn+1)(t)]dλ(t)

]2

dwα,β;ϕ0
(x)

=

∫
C[0,T ]

[
η0λ({t0}) +

n+1∑
j=1

∫
(tj−1,tj ]

[Zt(x) + Pn+1
β (~ηn+1)(t)]dλ(t)

]2

dwα,β;ϕ0(x),

where ϕ0 = 1
ϕ(R)ϕ. Now we have by Theorem 3.1

GE[G1|Xn+1](~ηn+1)

= [η0λ({t0})]2 + 2η0λ({t0})
n+1∑
j=1

∫
(tj−1,tj ]

[Zt(α) + Pn+1
β (~ηn+1)(t)]dλ(t)

+ 2
∑

1≤j<k≤n+1

∫
(tj−1,tj ]×(tk−1,tk]

[Zs1(α) + Pn+1
β (~ηn+1)(s1)][Zs2(α)

+ Pn+1
β (~ηn+1)(s2)]dλ2(s1, s2) +

n+1∑
j=1

∫
(tj−1,tj ]2

∫
C[0,T ]

[Zs1(x)

+ Pn+1
β (~ηn+1)(s1)][Zs2(x) + Pn+1

β (~ηn+1)(s2)]dwα,β;ϕ0
(x)dλ2(s1, s2)

=

∫ T

0

∫ T

0

[Zs1(α) + Pn+1
β (~ηn+1)(s1)][Zs2(α) + Pn+1

β (~ηn+1)(s2)]

dλ2(s1, s2) +

n+1∑
j=1

∫
(tj−1,tj ]2

Γj(s1 ∨ s2, s1 ∧ s2)dλ2(s1, s2)

=

[∫ T

0

[Zt(α) + Pn+1
β (~ηn+1)(t)]dλ(t)

]2

+

∫ T

0

∫ T

0

Λ(s1 ∨ s2, s1 ∧ s2)

dλ2(s1, s2),

since Γj(s1, s2) = 0 if sl = tj or sl = tj−1 for l = 1, 2. �

Remark 3.4. (1) The expressions for the results of [5, Theorem 4.3] and Theo-
rem 3.3 are similar, but Theorem 3.3 is an extension of [5, Theorem 4.3] since
the measure λ in [5, Theorem 4.3] is a continuous complex measure and it
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in Theorem 3.3 is an arbitrary complex measure. In addition, the proof of
Theorem 3.3 is more complicated than that of [5, Theorem 4.3].

(2) Let ϕ(R) = 1 and Z(x) =
∫ T

0
Zt(x)dλ(t) for x ∈ C[0, T ]. Under the

assumptions as in Theorem 3.3, we have E[Z] =
∫ T

0
Zt(α)dλ(t) and V ar(Z) =∫ T

0

∫ T
0

Λ(s1 ∨ s2, s1 ∧ s2)]dλ2(s1, s2).

Theorem 3.5. Under the assumptions as in Theorem 3.3, we have for mXn

a.e. ~ηn = (η0, η1, . . . , ηn) ∈ Rn+1,

GE[G1|Xn](~ηn)

=

[∫ tn

0

[Zt(α) + Pnβ (~ηn)(t)]dλ(t) +

∫
(tn,T ]

[α(t)− α(tn) + ηn]dλ(t)

]2

+

∫ tn

0

∫ tn

0

Λ(s1 ∨ s2, s1 ∧ s2)dλ2(s1, s2) +

∫ T

tn

∫ T

tn

[β(s1 ∧ s2)

− β(tn)]dλ2(s1, s2).

In particular, if the support of λ is contained in {t0, t1, . . . , tn, tn+1}, then for
mXn

a.e. ~ηn = (η0, η1, . . . , ηn) ∈ Rn+1, we have GE[G1|Xn](~ηn) = [
∑n
j=0

ηjλ({tj}) + [α(T )− α(tn) + ηn]λ({T})]2 + [β(T )− β(tn)][λ({T})]2.

Proof. By Theorems 2.3 and 3.3, we have for ~ηn = (η0, η1, . . . , ηn) ∈ Rn+1

GE[G1|Xn](~ηn)

=

∫
R
WT (ηn, ηn+1)

[∫ T

0

[Zt(α) + Pn+1
β (~ηn+1)(t)]dλ(t)

]2

dmL(ηn+1)

+

∫ T

0

∫ T

0

Λ(s1 ∨ s2, s1 ∧ s2)dλ2(s1, s2),

where ~ηn+1 = (~ηn, ηn+1). Since WT is Gaussian, we have by Theorem 3.2∫
R
WT (ηn, ηn+1)

[∫ T

0

[Zt(α) + Pn+1
β (~ηn+1)(t)]dλ(t)

]2

dmL(ηn+1)

=

∫
R
WT (ηn, ηn+1)

[∫ tn

0

[Zt(α) + Pnβ (~ηn)(t)]dλ(t) +

∫
(tn,T ]

[Zt(α)

+ Pn+1
β (~ηn+1)(t)]dλ(t)

]2

dmL(ηn+1)

=

[∫ tn

0

[Zt(α) + Pnβ (~ηn)(t)]dλ(t) +

∫
(tn,T ]

[α(t)− α(tn) + ηn]dλ(t)

]2

+ [β(T )− β(tn)]

[∫ T

tn

γ2(n+1)(t)dλ(t)

]2

.
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We also have

[β(T )− β(tn)]

[∫ T

tn

γ2(n+1)(t)dλ(t)

]2

+

∫
[tn,T ]2

Γn+1(s1 ∨ s2, s1 ∧ s2)

dλ2(s1, s2)

=
1

β(T )− β(tn)

[∫
∆1

[β(s1)− β(tn)][β(s2)− β(tn) + β(T )− β(s2)]dλ2(s1,

s2) +

∫
∆2

[β(s2)− β(tn)][β(s1)− β(tn) + β(T )− β(s1)]dλ2(s1, s2)

]
=

∫ T

tn

∫ T

tn

[β(s1 ∧ s2)− β(tn)]dλ2(s1, s2),

where ∆1 = {(s1, s2) : tn ≤ s1 ≤ s2 ≤ Tn} and ∆2 = {(s1, s2) : tn ≤ s2 < s1 ≤
Tn}. Now we have

GE[G1|Xn](~ηn)

=

[∫ tn

0

[Zt(α) + Pnβ (~ηn)(t)]dλ(t) +

∫
(tn,T ]

[α(t)− α(tn) + ηn]dλ(t)

]2

+

∫ tn

0

∫ tn

0

Λ(s1 ∨ s2, s1 ∧ s2)dλ2(s1, s2) + [β(T )− β(tn)]

×
[∫ T

tn

γ2(n+1)(t)dλ(t)

]2

+

∫
[tn,T ]2

Γn+1(s1 ∨ s2, s1 ∧ s2)dλ2(s1, s2)

=

[∫ tn

0

[Zt(α) + Pnβ (~ηn)(t)]dλ(t) +

∫
(tn,T ]

[α(t)− α(tn) + ηn]dλ(t)

]2

+

∫ tn

0

∫ tn

0

Λ(s1 ∨ s2, s1 ∧ s2)dλ2(s1, s2) +

∫ T

tn

∫ T

tn

[β(s1 ∧ s2)− β(tn)]

dλ2(s1, s2)

which completes the proof. �

The following theorem is useful for the remainder results of this section [5].

Theorem 3.6. For m ∈ N and t ∈ [0, T ], let Ft(x) = [x(t)]m for x ∈ C[0, T ]
and suppose that

∫
R |u|

mdϕ(u) < ∞. Then Ft is wα,β;ϕ-integrable and for

mXn+1
a.e. ~ηn+1 ∈ Rn+2, GE[Ft|Xn+1](~ηn+1) is given by

GE[Ft|Xn+1](~ηn+1)(9)

=

[ m2 ]∑
k=0

m!

2kk!(m− 2k)!
[Pn+1
β (~ηn+1)(t) + Zt(α)]m−2k[Γ(t)]k,

where Γ(t) is given by (5) and [m2 ] denotes the greatest integer less than or
equal to m

2 . In particular, if t = tj for some j ∈ {0, 1, . . . , n, n + 1}, then we



AN EVALUATION FORMULA FOR A CONDITIONAL EXPECTATION 461

have GE[Ft|Xn+1](~ηn+1) = ηmj for mXn+1
a.e. ~ηn+1 = (η0, η1, . . . , ηn, ηn+1) ∈

Rn+2.

Theorem 3.7. Under the assumptions as in Theorem 3.6, we have the follow-
ings:

(a) If t ∈ [0, tn], then for mXn
a.e. ~ηn ∈ Rn+1,

GE[Ft|Xn](~ηn) =

[ m2 ]∑
k=0

m!

2kk!(m− 2k)!
[Pnβ (~ηn)(t) + Zt(α)]m−2k[Γ(t)]k.

In particular, if t = tj for some j ∈ {0, 1, . . . , n}, then GE[Ft|Xn](~ηn)
= ηmj for mXn

a.e. ~ηn = (η0, η1, . . . , ηn) ∈ Rn+1.

(b) If t ∈ (tn, T ], then for mXn
a.e. ~ηn = (η0, η1, . . . , ηn) ∈ Rn+1,

GE[Ft|Xn](~ηn) =

[ m2 ]∑
k=0

[ m2 −k]∑
l=0

m!

2k+lk!l!(m− 2k − 2l)!
[ηn + α(t)

− α(tn)]m−2k−2l[γ2(n+1)(t)[β(t)− β(tn)]]l[Γ(t)]k.

In particular, if t = T , then GE[F |Xn](~ηn) is reduced to

GE[F |Xn](~ηn) =

[ m2 ]∑
l=0

m!

2ll!(m− 2l)!
[ηn + α(T )− α(tn)]m−2l[β(T )− β(tn)]l.

Proof. (a) follows from (9) of Theorem 3.6 since WT is a probability density.
To prove (b), let t ∈ (tn, T ]. Then we have by the change of variable theorem∫

R
[Pn+1
β (~ηn+1)(t) + Zt(α)]m−2kWT (ηn, ηn+1)dmL(ηn+1)

=

[
1

2π[β(T )− β(tn)]

] 1
2
∫
R

[γ2(n+1)(t)(ηn+1 − ηn) + ηn + α(t)− α(tn)

− γ2(n+1)(t)[α(T )− α(tn)]]m−2k exp

{
− [ηn+1 − ηn − α(T ) + α(tn)]2

2[β(T )− β(tn)]

}
dmL(ηn+1)

=

[
1

2πγ2(n+1)(t)[β(t)− β(tn)]

] 1
2
∫
R

[u+ ηn + α(t)− α(tn)]m−2k

× exp

{
− u2

2γ2(n+1)(t)[β(t)− β(tn)]

}
dmL(u).

Using the same process as used in the proof of [2, Theorem 3.1], we have by
Theorem 3.6

GE[Ft|Xn](~ηn) =

[ m2 ]∑
k=0

[ m2 −k]∑
l=0

m!

2k+lk!l!(m− 2k − 2l)!
[ηn + α(t)

− α(tn)]m−2k−2l[γ2(n+1)(t)[β(t)− β(tn)]]l[Γ(t)]k
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which proves (b). �

By Theorem 3.7 and [5, Theorem 4.5], we can prove the following theorem.

Theorem 3.8. For m ∈ N, let F (x) =
∫ T

0
[x(t)]mdλ(t) for x ∈ C[0, T ], where

λ is a finite complex measure on the Borel class of [0, T ], and suppose that∫
R |u|

mdϕ(u) < ∞ and
∫ T

0
|α(t)|md|λ|(t) < ∞. Then for mXn a.e. ~ηn =

(η0, η1, . . . , ηn) ∈ Rn+1, GE[F |Xn](~ηn) is given by

GE[F |Xn](~ηn) =

[ m2 ]∑
k=0

m!

2kk!(m− 2k)!

∫ tn

0

[Pnβ (~ηn)(t) + Zt(α)]m−2k[Γ(t)]kdλ(t)

+

[ m2 ]∑
k=0

[ m2 −k]∑
l=0

m!

2k+lk!l!(m− 2k − 2l)!

∫
(tn,T ]

[ηn + α(t)

− α(tn)]m−2k−2l[γ2(n+1)(t)[β(t)− β(tn)]]l[Γ(t)]kdλ(t).

In particular, if the support of λ is contained in {t0, t1, . . . , tn, tn+1}, then
GE[F |Xn](~ηn) is reduced to

GE[F |Xn](~ηn) =

n∑
j=0

λ({tj})ηmj + λ({T})
[ m2 ]∑
l=0

m!

2ll!(m− 2l)!
[ηn + α(T )

− α(tn)]m−2l[β(T )− β(tn)]l.

Applying the integration by parts formula to the result of Theorem 3.8
repeatedly, we have the following corollary [3].

Corollary 3.9. Suppose that α(t) = Pnβ (α)(t) for t ∈ [0, tn] and α(t) = α(tn)

for t ∈ (tnT ]. For m ∈ N, let F (x) =
∫ T

0
[x(t)]mdβ(t) for x ∈ C[0, T ] and

suppose that
∫
R |u|

mdϕ(u) < ∞. Then, for mXn
a.e. ~ηn = (η0, η1, . . . , ηn) ∈

Rn+1, GE[F |Xn](~ηn) is given by

GE[F |Xn](~ηn)

=

n∑
j=1

[ m2 ]∑
k=0

m−2k∑
l=0

m!(l + k)![β(tj)− β(tj−1)]k+1ηm−2k−l
j−1 (ηj − ηj−1)l

2kl!(m− 2k − l)!(l + 2k + 1)!

+

[ m2 ]∑
k=0

[ m2 −k]∑
l=0

m!(2l + k)!ηm−2k−2l
n [β(T )− β(tn)]l+k+1

2l+kl!(m− 2k − 2l)!(2l + 2k + 1)!
.

Example 3.10. For l = 1, 2, 3, let Fl(x) =
∫ T

0
[x(t)]ldβ(t) for x ∈ C[0, T ]. By

[5, Example 4.6], we have the followings:
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(a) If
∫
R |u|dϕ(u) < ∞ and

∫ T
0
|α(t)|dβ(t) < ∞, then for mXn a.e. ~ηn =

(η0, η1, . . . , ηn) ∈ Rn+1

GE[F1|Xn](~ηn) =

∫ T

0

α(t)dβ(t) +
1

2

n∑
j=1

[β(tj)− β(tj−1)][ηj − α(tj)

+ ηj−1 − α(tj−1)] + [β(T )− β(tn)][ηn − α(tn)].

(b) If
∫
R u

2dϕ(u) < ∞ and
∫ T

0
[α(t)]2dβ(t) < ∞, then for mXn

a.e. ~ηn =

(η0, η1, . . . , ηn) ∈ Rn+1

GE[F2|Xn](~ηn)

=

∫ T

0

α(t)

∫
R

[α(t) + 2Pn+1
β (~ηn+1 − α)(t)]WT (ηn, ηn+1)dmL(ηn+1)dβ(t)

+
1

6

n∑
j=1

[β(tj)− β(tj−1)][β(tj)− β(tj−1) + 2[[ηj − α(tj)]
2 + [ηj − α(tj)]

× [ηj−1 − α(tj−1)] + [ηj−1 − α(tj−1)]2]] +
1

2
[β(T )− β(tn)][β(T )− β(tn)

+ 2[ηn − α(tn)]2]

=

∫ tn

0

α(t)[α(t) + 2Pnβ (~ηn − α)(t)]dβ(t) +

∫ T

tn

α(t)[α(t) + 2[ηn − α(tn)]]

dβ(t) +
1

6

n∑
j=1

[β(tj)− β(tj−1)][β(tj)− β(tj−1) + 2[[ηj − α(tj)]
2 + [ηj

− α(tj)][ηj−1 − α(tj−1)] + [ηj−1 − α(tj−1)]2]] +
1

2
[β(T )− β(tn)][β(T )

− β(tn) + 2[ηn − α(tn)]2]

since
∫
R P

n+1
β (~ηn+1−α)(t)WT (ηn, ηn+1)dmL(ηn+1) = ηn−α(tn), where ~ηn+1 =

(~ηn, ηn+1).

(c) If
∫
R u

3dϕ(u) < ∞ and
∫ T

0
[α(t)]3dβ(t) < ∞, then for mXn a.e. ~ηn =

(η0, η1, . . . , ηn) ∈ Rn+1

GE[F3|Xn](~ηn)

=

∫ T

0

∫
R
α(t)[[α(t)]2 + 3[Γ(t) + Pn+1

β (~ηn+1 − α)(t)[Pn+1
β (~ηn+1 − α)(t)

+ α(t)]]]WT (ηn, ηn+1)dmL(ηn+1)dβ(t) +
1

4

n∑
j=1

[β(tj)− β(tj−1)][[β(tj)

− β(tj−1)][ηj − α(tj) + ηj−1 − α(tj−1)] + [ηj − α(tj)]
3 + [ηj − α(tj)]

2

× [ηj−1 − α(tj−1)] + [ηj − α(tj)][ηj−1 − α(tj−1)]2 + [ηj−1 − α(tj−1)]3]
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+
1

2
[β(T )− β(tn)][ηn − α(tn)][3[β(T )− β(tn)] + 2[ηn − α(tn)]2].

For t ∈ (tn, T ], we have by the change of variable theorem∫
R

[Pn+1
β (~ηn+1 − α)(t)]2WT (ηn, ηn+1)dmL(ηn+1)

=

[
1

2π[β(T )− β(tn)]

] 1
2
∫
R
[γ2(n+1)(t)[ηn+1 − ηn − α(T ) + α(tn)]

+ ηn − α(tn)]2 exp

{
− [ηn+1 − ηn − α(T ) + α(tn)]2

2[β(T )− β(tn)]

}
dmL(ηn+1)

= γ2(n+1)(t)[β(t)− β(tn)] + [ηn − α(tn)]2

and Γ(t) + γ2(n+1)(t)[β(t)− β(tn)] = β(t)− β(tn), so that

GE[F3|Xn](~ηn)

=

∫ tn

0

α(t)[[α(t)]2 + 3[Γ(t) + Pnβ (~ηn − α)(t)[Pnβ (~ηn − α)(t) + α(t)]]]dβ(t)

+

∫ T

tn

α(t)[[α(t)]2 + 3[β(t)− β(tn) + [ηn − α(tn)][ηn + α(t)− α(tn)]]]

dβ(t) +
1

4

n∑
j=1

[β(tj)− β(tj−1)][[β(tj)− β(tj−1)][ηj − α(tj) + ηj−1

− α(tj−1)] + [ηj − α(tj)]
3 + [ηj − α(tj)]

2[ηj−1 − α(tj−1)] + [ηj − α(tj)]

× [ηj−1 − α(tj−1)]2 + [ηj−1 − α(tj−1)]3] +
1

2
[β(T )− β(tn)][ηn − α(tn)]

× [3[β(T )− β(tn)] + 2[ηn − α(tn)]2].

Theorem 3.11. Let F (x) = exp{
∫ T

0
x(t)dβ(t)} for x ∈ C[0, T ]. Suppose that

limt→T− α(t) = α(T ). Let τ : 0 = t0 < t1 < · · · < tn < tn+1 = T be any
partition of [0, T ] and let Xτ (x) = (x(t0), x(t1), . . . , x(tn)) for x ∈ C[0, T ].
Then, for wα,β;ϕ a.e. y ∈ C[0, T ], we have

lim
‖τ‖→0

GE[F |Xτ ](Xτ (y)) = F (y).

Proof. For wα,β;ϕ a.e. y ∈ C[0, T ], we have

GE[F |Xτ ](Xτ (y))

= exp

{
1

2

n∑
j=1

[β(tj)− β(tj−1)][y(tj−1) + y(tj)]

}∫
C[0,T ]

exp

{∫ T

0

Zt(x)

dβ(t)

}
dwα,β;ϕ0

(x)

∫
R
WT (y(tn), ηn+1) exp

{
1

2
[β(T )− β(tn)][y(tn)

+ ηn+1]

}
dmL(ηn+1)
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= exp

{
1

2

[ n∑
j=1

[β(tj)− β(tj−1)][y(tj−1) + y(tj)] + [β(T )− β(tn)][2y(tn)

+ α(T )− α(tn)]

]
+

1

8
[β(T )− β(tn)]3

}∫
C[0,T ]

exp

{∫ T

0

Zt(x)dβ(t)

}
dwα,β;ϕ0

(x)

by Theorem 2.3 and the same process used in Example 3.10, where ϕ0 = 1
ϕ(R)ϕ.

Letting ‖τ‖ → 0, we have

lim
‖τ‖→0

GE[F |Xτ ](Xτ (y)) = F (y)

because lim‖τ‖→0 Zt(x) = 0 for x ∈ C[0, T ] and both α and β are left-continuous
at T . �

4. Translation theorems for the generalized conditional expectation

In this section we derive translation theorems for the Radon-Nikodym deriva-
tives of the functions on C[0, T ] with the conditioning functions Xn and Xn+1.
To do this, we need the following translation theorem.

Theorem 4.1. Let h be continuous and of bounded variation on [0, T ]. Suppose
that α is of bounded variation or continuous. Let a ∈ R and define x0 by

x0(t) =
∫ t

0
h(u)dβ(u) + a for t ∈ [0, T ]. Let ϕa be the measure defined by

ϕa(B) = ϕ(B + a) for B ∈ B(R). If F : C[0, T ]→ C is wα,β;ϕ-integrable, then
F (·+ x0) is wα,β;ϕa

-integrable and∫
C[0,T ]

F (x)dwα,β;ϕ(x) = J1(h)

∫
C[0,T ]

F (x+ x0)J2(h, x)dwα,β;ϕa
(x),(10)

where J1(h) = exp{− 1
2

∫ T
0

[h(t)]2dβ(t)+
∫ T

0
h(t)dα(t)} and J2(h, x) = exp{−

∫ T
0

h(t)dx(t)} for x ∈ C[0, T ].

Proof. Suppose that F is bounded and continuous, and vanishes on the set
{x ∈ C[0, T ] : ‖x‖∞ > M} for some real number M > 0. For nonnegative

integer n, let ~sn+1 = (s0, s1, . . . , sn, sn+1) = (0, T
n+1 ,

2T
n+1 , . . . ,

nT
n+1 ,

(n+1)T
n+1 ).

Let Pn+1
β be the polygonal function given by (3) with replacing tj by sj . Then

we have by Theorem 1.1∫
C[0,T ]

F (Pn+1
β (x))dwα,β;ϕ(x)

=

∫
Rn+2

F (Pn+1
β (~un+2))Wn+1(~sn+1, ~un+1, u0)dmn+1

L (~un+1)dϕ(u0)

= exp

{
−1

2

n+1∑
j=1

[x0(sj)− x0(sj−1)]2

β(sj)− β(sj−1)

}∫
Rn+2

F (Pn+1
β (~un+2))Wn+1(~sn+1,
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~un+1 − ~x1, u0 − x0(s0)) exp

{
−
n+1∑
j=1

x0(sj)− x0(sj−1)

β(sj)− β(sj−1)
[uj − uj−1

− x0(sj) + x0(sj−1)− α(sj) + α(sj−1)]

}
dmn+1

L (~un+1)dϕ(u0),

where ~un+1 = (u1, . . . , un, un+1), ~un+2 = (u0, ~un+1) and ~x1 = (x0(s1), x0(s2),
. . . , x0(sn), x0(sn+1)). Let ~x0 = (x0(s0), x0(s1), . . . , x0(sn), x0(sn+1)). By the
change of variable theorem and Theorem 1.1 again, we have∫

C[0,T ]

F (Pn+1
β (x))dwα,β;ϕ(x)

= exp

{
−1

2

n+1∑
j=1

[x0(sj)− x0(sj−1)]2

β(sj)− β(sj−1)

}∫
Rn+2

F (Pn+1
β (~un+2 + ~x0))

×Wn+1(~sn+1, ~un+1, u0) exp

{
−
n+1∑
j=1

x0(sj)− x0(sj−1)

β(sj)− β(sj−1)
[uj − uj−1

− α(sj) + α(sj−1)]

}
dmn+1

L (~un+1)dϕa(u0)

= exp

{
−1

2

n+1∑
j=1

[x0(sj)− x0(sj−1)]2

β(sj)− β(sj−1)

}∫
C[0,T ]

F (Pn+1
β (x+ x0)) exp

{
−
n+1∑
j=1

x0(sj)− x0(sj−1)

β(sj)− β(sj−1)
[x(sj)− x(sj−1)− α(sj) + α(sj−1)]

}
dwα,β;ϕa

(x).

Since h is continuous on [0, T ], we have for j = 1, . . . , n, n+ 1

x0(sj)− x0(sj−1) =

∫ sj

sj−1

h(t)dβ(t) = h(ξj)[β(sj)− β(sj−1)]

for some ξj ∈ [sj−1, sj ] by the mean value theorem for integral. Now, we have∫
C[0,T ]

F (Pn+1
β (x))dwα,β;ϕ(x)

= exp

{
−1

2

n+1∑
j=1

[h(ξj)]
2[β(sj)− β(sj−1)]

}∫
C[0,T ]

F (Pn+1
β (x+ x0))

× exp

{
−
n+1∑
j=1

h(ξj)[x(sj)− x(sj−1)− α(sj) + α(sj−1)]

}
dwα,β;ϕa(x).

Note that (Pn+1
β )∞n=0 converges uniformly to the identity function on C[0, T ].

Letting n → ∞, we have (10) by using the same process used in the proof of
[6, Theorem 3.1]. For the other cases of F , (10) can be proved by using the
same process used in the proof of [10, Theorem 2.1]. �
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Remark 4.2. Let β be continuously differentiable with β′ > 0. Let h be in
C[0, T ] and let h

β′ be of bounded variation. Replacing h in Theorem 4.1 by h
β′

we can obtain [10, Theorem 2.1]. In Theorem 4.1, the conditions those β′ > 0
and β′ is continuous are removed so that Theorem 4.1 generalizes [10, Theorem
2.1]. Note that, to prove [10, Theorem 2.1], Ryu used the mean value theorem
for differentiation, but the mean value theorem for integral is used in the proof
of Theorem 4.1.

We now derive translation theorems for the generalized conditional expec-
tations of functions on C[0, T ] with the conditioning functions Xn and Xn+1.

Theorem 4.3. Under the assumptions as in Theorem 4.1, we have for mXn+1

a.e. ~ηn+1 ∈ Rn+2

GE[F |Xn+1](~ηn+1)

= J1(h)J3(h, ~ηn+1)GEwϕa
[F (·+ x0)J2(h, ·)|Xn+1](~ηn+1 − ~x0),

where ~x0 = (x0(t0), x0(t1), . . . , x0(tn), x0(tn+1)), GEwϕa
denotes the general-

ized conditional expectation with respect to wα,β;ϕa
, and for m ∈ N (1 ≤ m ≤

n+ 1), ~ηm = (η0, η1, . . . , ηm) ∈ Rm+1

J3(h, ~ηm) = exp

{ m∑
j=1

x0(tj)− x0(tj−1)

β(tj)− β(tj−1)

[
ηj − ηj−1 − α(tj)

+ α(tj−1)− 1

2
[x0(tj)− x0(tj−1)]

]}
.

Proof. Let ϕ1 = 1
ϕa(R)ϕa. By Theorems 2.2 and 4.1, we have for mXn+1 a.e.

~ηn+1 ∈ Rn+2

GE[F |Xn+1](~ηn+1)

=
1

ϕ(R)

∫
C[0,T ]

F (x− Pn+1
β (x) + Pn+1

β (~ηn+1))dwα,β;ϕ(x)

=
J1(h)

ϕa(R)

∫
C[0,T ]

F (x0 + x− Pn+1
β (x) + Pn+1

β (~ηn+1 − x0))J2(h, x)

dwα,β;ϕa
(x)

= J1(h)

∫
C[0,T ]

F (x0 + x− Pn+1
β (x) + Pn+1

β (~ηn+1 − x0))J2(h, x

− Pn+1
β (x) + Pn+1

β (~ηn+1 − x0))J2(h, Pn+1
β (x)− Pn+1

β (~ηn+1 − x0))

dwα,β;ϕ1
(x)

since ϕa(R) = ϕ(R+a) = ϕ(R). Since ϕ1 is a probability measure, x−Pn+1
β (x)

and Pn+1
β (x) are independent with respect to wα,β;ϕ1

by Theorem 2.1. Hence
we have

GE[F |Xn+1](~ηn+1) = J1(h)GEwϕa
[F (·+ x0)J2(h, ·)|Xn+1](~ηn+1 − ~x0)J2(h,
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− Pn+1
β (~ηn+1 − x0))

∫
C[0,T ]

J2(h, Pn+1
β (x))dwα,β;ϕ1

(x)

since Pn+1
β (x0) = Pn+1

β (~x0). Note that for ~ηn+1 = (η0, η1, . . . , ηn, ηn+1)∫ T

0

h(t)dPn+1
β (~ηn+1 − x0)(t) =

n+1∑
j=1

x0(tj)− x0(tj−1)

β(tj)− β(tj−1)
[ηj − ηj−1

− x0(tj) + x0(tj−1)]

and by Theorem 1.1, we have∫
C[0,T ]

J2(h, Pn+1
β (x))dwα,β;ϕ1

(x)

=

∫
C[0,T ]

exp

{
−
n+1∑
j=1

x0(tj)− x0(tj−1)

β(tj)− β(tj−1)
[x(tj)− x(tj−1)]

}
dwα,β;ϕ1

(x)

= exp

{n+1∑
j=1

[
[x0(tj)− x0(tj−1)]2

2[β(tj)− β(tj−1)]
− x0(tj)− x0(tj−1)

β(tj)− β(tj−1)
[α(tj)− α(tj−1)]

]}
.

Now, we have the desired result by a simple calculation. �

Theorem 4.4. Under the assumptions as in Theorem 4.1, we have for mXn

a.e. ~ηn ∈ Rn+1

GE[F |Xn](~ηn) = J1(h)J3(h, ~ηn)GEwϕa
[F (·+ x0)J2(h, ·)|Xn](~ηn − ~x0),

where ~x0 = (x0(t0), x0(t1), . . . , x0(tn)) and J3 is as given in Theorem 4.3.

Proof. Let ~y0 = (x0(t0), x0(t1), . . . , x0(tn), x0(tn+1)). By Theorems 2.3 and
4.3, we have for mXn

a.e. ~ηn = (η0, η1, . . . , ηn) ∈ Rn+1

GE[F |Xn](~ηn) = J1(h)

∫
R
J3(h, ~ηn+1)GEwϕa

[F (·+ x0)J2(h, ·)|Xn+1](~ηn+1

− ~y0)WT (ηn, ηn+1)dmL(ηn+1),

where ~ηn+1 = (η0, η1, . . . , ηn, ηn+1). By the change of variable theorem with a
simple calculation, we have

GE[F |Xn](~ηn)

= J1(h)

∫
R
J3(h, ~ηn)GEwϕa

[F (·+ x0)J2(h, ·)|Xn+1](~ηn − ~x0, ηn+1

− x0(tn+1))WT (ηn − x0(tn), ηn+1 − x0(tn+1))dmL(ηn+1)

= J1(h)J3(h, ~ηn)

∫
R
GEwϕa

[F (·+ x0)J2(h, ·)|Xn+1](~ηn − ~x0, ηn+1)

×WT (ηn − x0(tn), ηn+1)dmL(ηn+1).

Now, the theorem follows from Theorem 2.3 as desired. �
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Finally, we have the next example which is useful in the Feynman integration
theory.

Example 4.5. Let the assumptions be as in Theorem 4.1. Let A(λ, x) =

exp{λ
∫ T

0
h(t)dx(t)} for λ ∈ R and for x ∈ C[0, T ]. Letting a = 0 and F ≡ 1,

we have the followings:
(a) By Theorem 4.1, we have∫
C[0,T ]

A(λ, x)dwα,β;ϕ(x) = ϕ(R) exp

{
λ2

2

∫ T

0

[h(t)]2dβ(t) + λ

∫ T

0

h(t)dα(t)

}
which can also be obtained by applications of [4, Theorem 3.4] and [4, Corollary
3.7].

(b) By Theorem 4.3, we have for mXn+1 a.e. ~ηn+1 = (η0, η1, . . . , ηn, ηn+1) ∈
Rn+2

GE[A(1, ·)|Xn+1](~ηn+1)

= exp

{
1

2

∫ T

0

[h(t)]2dβ(t) +

∫ T

0

h(t)dα(t) +

n+1∑
j=1

x0(tj)− x0(tj−1)

β(tj)− β(tj−1)

×
[
ηj − ηj−1 − α(tj) + α(tj−1)− 1

2
[x0(tj)− x0(tj−1)]

]}
.

(c) By Theorem 4.4, we have for mXn
a.e. ~ηn = (η0, η1, . . . , ηn) ∈ Rn+1

GE[A(1, ·)|Xn](~ηn)

= exp

{
1

2

∫ T

0

[h(t)]2dβ(t) +

∫ T

0

h(t)dα(t) +

n∑
j=1

x0(tj)− x0(tj−1)

β(tj)− β(tj−1)

×
[
ηj − ηj−1 − α(tj) + α(tj−1)− 1

2
[x0(tj)− x0(tj−1)]

]}
.
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Cameron-Martin translation theorem, Tôhoku Math. J. (2) 30 (1978), no. 4, 505–515.

https://doi.org/10.2748/tmj/1178229910

Dong Hyun Cho
Department of Mathematics

Kyonggi University

Suwon 16227, Korea
Email address: j94385@kyonggi.ac.kr

http://projecteuclid.org/euclid.pjm/1102688300
http://projecteuclid.org/euclid.pjm/1102688300
https://doi.org/10.5831/HMJ.2008.30.4.723
https://doi.org/10.5831/HMJ.2008.30.4.723
https://doi.org/10.5831/HMJ.2010.32.4.633
https://doi.org/10.2748/tmj/1178229910

