• Title/Summary/Keyword: symplectic structure

Search Result 35, Processing Time 0.019 seconds

A NEW QUARTERNIONIC DIRAC OPERATOR ON SYMPLECTIC SUBMANIFOLD OF A PRODUCT SYMPLECTIC MANIFOLD

  • Rashmirekha Patra;Nihar Ranjan Satapathy
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.83-95
    • /
    • 2024
  • The Quaternionic Dirac operator proves instrumental in tackling various challenges within spectral geometry processing and shape analysis. This work involves the introduction of the quaternionic Dirac operator on a symplectic submanifold of an exact symplectic product manifold. The self adjointness of the symplectic quaternionic Dirac operator is observed. This operator is verified for spin ${\frac{1}{2}}$ particles. It factorizes the Hodge Laplace operator on the symplectic submanifold of an exact symplectic product manifold. For achieving this a new complex structure and an almost quaternionic structure are formulated on this exact symplectic product manifold.

NOTE ON CONTACT STRUCTURE AND SYMPLECTIC STRUCTURE

  • Cho, Mi-Sung;Cho, Yong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.181-189
    • /
    • 2000
  • Let (X, J) be a closed, connected almost complex four-manifold. Let $X_1$ be the complement of an open disc in X and let ${\varepsilon}_1$be the contact structure on the boundary ${\varepsilon}X_1$ which is compatible with a symplectic structure on $X_1$, Then we show that (X, J) is symplectic if and only if the contact structure ${\varepsilon}_1$ on ${\varepsilon}X_1$ is isomorphic to the standard contact structure on the 3-sphere $S^3$ and ${\varepsilon}X_1$is J-concave. Also we show that there is a contact structure ${\varepsilon}_0\ on\ S^2\times\ S^1$which is not strongly symplectically fillable but symplectically fillable, and that $(S^2{\times}S^1,\;{\varepsilon})$ has infinitely many non-diffeomorphic minimal fillings whose restrictions on$\S^2\times\ S^1$are ${\sigma}$ where ${\sigma}$ is the restriction of the standard symplectic structure on $S^2{\times}D^2$.

  • PDF

Exotic symplectic structures on $S^3{\times}R$

  • Cho, Yong-Seoung;Yoon, Jin-Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • We construct exotic symplectic structures on $S^3 \times R$ which is obtained by the symplectic sum of two smooth symplectic four-manifolds with exotic symplectic structures, each of which is diffeomorphic to $R^4$.

  • PDF

A CONSTRAINT ON SYMPLECTIC STRUCTURE OF ${b_2}^{+}=1$ MINIMAL SYMPLECTIC FOUR-MANIFOLD

  • Cho, Yong-Seung;Kim, Won-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.209-216
    • /
    • 1999
  • Let X be a minimal symplectic four-manifold with ${b_2}^{+}$=1 and $c_1(K)^2\;\geq\;0$. Then we show that there are no symple tic structures $\omega$ such that $$c_1(K)$\cdot\omega$ > 0, if X contains an embedded symplectic submanifold $\Sigma$ satisfying $\int_\Sigmac_1$(K)<0.

  • PDF

Stability of Explicit Symplectic Partitioned Runge-Kutta Methods

  • Koto, Toshiyuki;Song, Eunjee
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • A numerical method for solving Hamiltonian equations is said to be symplectic if it preserves the symplectic structure associated with the equations. Various symplectic methods are widely used in many fields of science and technology. A symplectic method preserves an approximate Hamiltonian perturbed from the original Hamiltonian. It theoretically supports the effectiveness of symplectic methods for long-term integration. Although it is also related to long-term integration, numerical stability of symplectic methods have received little attention. In this paper, we consider explicit symplectic methods defined for Hamiltonian equations with Hamiltonians of the special form, and study their numerical stability using the harmonic oscillator as a test equation. We propose a new stability criterion and clarify the stability of some existing methods that are visually based on the criterion. We also derive a new method that is better than the existing methods with respect to a Courant-Friedrichs-Lewy condition for hyperbolic equations; this new method is tested through a numerical experiment with a nonlinear wave equation.

NOTE ON NORMAL EMBEDDING

  • Yi, Seung-Hun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.289-297
    • /
    • 2002
  • It was shown by L. Polterovich ([3]) that if L is a totally real submanifold of a symplectic manifold $(M,\omega)$ and L is parallelizable then L is normal. So we try to find an answer to the question of whether there is a compatible almost complex structure J on the symplectic vector bundle $TM$\mid$_{L}$ such that $TL{\cap}JTL=0$ assuming L is normal and parallelizable. Although we could not reach an answer, we observed that the claim holds at the vector space level. And related to the question, we showed that for a symplectic vector bundle $(M,\omega)$ of rank 2n and $E=E_1{\bigoplus}E_2$, where $E=E_1,E_2$are Lagrangian subbundles of E, there is an almost complex structure J on E compatible with ${\omega}$ and $JE_1=E_2$. And finally we provide a necessary and sufficient condition for a given embedding into a symplectic manifold to be normal.