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SYMPLECTIC DECOMPOSITION OF SYMPLECTIC SUBSPACES

Jae-Hyouk Lee

Abstract. We introduce a decomposition on a symplectic subspace determined
by symplectic structure and study its properties. As a consequence, we give an
elementary proof of the deformation of the Grassmannians of symplectic subspaces
to the complex Grassmannians.

1. Introduction

On a 2n-dimensional symplectic vector space V with a symplectic structure ω,
the set of all 2k-dimensional symplectic subspaces S ⊂ V is called the symplectic
Grassmannian GrSp (2k, 2n). This is an open subset of the real Grassmannian
Gr (2k, 2n) and contains the complex Grassmannian GrC (k, n) consisted of those
subspaces S which are complex for a linear complex structure on V .

In [2], the symplectic Grassmannian GrSp (2k, 2n) is introduced and identified as

GrSp (2k, 2n) ' Sp (2n,R)
Sp (2k,R) Sp (2n− 2k,R)

,

and we discussed natural inclusions

GrC (k, n) ⊂ GrSp (2k, 2n) ⊂ Gr (2k, 2n) .

The inclusion GrSp (2k, 2n) ⊂ Gr (2k, 2n) is the complement of a hyperplane in
Λ2kV , and the inclusion GrC (k, n) ⊂ GrSp (2k, 2n) is the intersection with Λk,k

R V ,
and topologically it is a deformation retract. In particular, the deformation retract
of GrSp (2k, 2n) is as natural as the deformation from Sp (2n,R) to U (n) which is
related to the Siegel upper half space Sp (2n,R) /U (n) representing the space of all
compatible complex structures on (V, ω). But the proof in [2] contains tedious issues
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left to the reader, and it turns out that many readers find difficulties to fill in the
detail of arguments. The objective of this paper is to show the deformation retract
of GrSp (2k, 2n) via rather elementary methods.

We introduce a notion of ω-basis and ω-decomposition of a symplectic subspace
S in (V, ω) determined by the symplectic structure ω on V (Definition 4), and show
that the decomposition is uniquely determined (Lemma 3). Moreover, we obtain the
following key Theorem 7,

Theorem. For each 2k-dimensional symplectic subspace S in a 2n-dimensional
Hermitian vector space (V, ω, J, g), there is an 1-parameter family of symplectic sub-
spaces S (t), t ∈ [0, 1] in V such that S (0) = S and S (1) is a complex subspace in
V . Moreover, it is uniquely determined by the ω-decomposition of S.

As a consequence we show that complex Grassmannian GrC (k, n) is a strong
deformation retract of the symplectic Grassmannian GrSp (2k, 2n) (Theorem 9)

In [2], each element in GrSp (2k, 2n) is considered as an element of Λ2kV but in
this paper we rather consider it as a linear subspace.

Acknowledgments. The author would like to thank the referees for their valu-
able comments which helped to improve the manuscript. This research is sup-
ported by Basic Science Research Program through the National Research Foun-
dation of Korea(NRF) funded by the Ministry of Education, Science and Technol-
ogy(No.2014027205).

2. Preliminaries

In this section, we recall the definition of symplectic Grassmannians and discuss
their basic properties and their relationships with real and complex Grassmannians
in [2].

In this article, V always denotes a 2n-dimensional symplectic vector space with
symplectic form ω. Moreover, we consider a Hermitian structure (ω, J, g) on V where
J is a complex structure and g is a metric structure on V satisfying

ω (u, v) = g (Ju, v) , g (Ju, Jv) = g (u, v)

for any u, v ∈ V . Note that any two among symplectic, complex and metric struc-
tures on V are called compatible with each other if they define the third structure
via the relation ω (u, v) = g (Ju, v) and together they make V into a Hermitian
vector space.
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Symplectic complement, null space and symplectic rank For any linear sub-
space P in symplectic vector space (V, ω), we recall the following notions.

(1) The symplectic complement of P is Pω := {u ∈ V | ω (u, v) = 0 for all v ∈ P}
(2) The null space of P is N (P ) := P ∩ Pω and its dimension is called the

nullity n (P ) := dimN (P )
(3) The symplectic rank, or simply rank, of P is r (P ) := max {r ∈ N : (ω|P )r 6= 0}
(4) Any two vectors u and v with ω (u, v) = 0 (resp. g(u, v) = 0) are called

ω-orthogonal (resp. g-orthogonal)

The null space N (P ) is the largest subset of P where the restriction of ω vanishes,
and the rank r (P ) is half of the maximal possible dimension among subspaces in
P where ω is nondegenerate.

Symplectic complements satisfy the following basic properties:

(i) (Pω)ω = P , (ii) (P ∩Q)ω = Pω + Qω and (iii) P ⊂ Q iff Pω ⊃ Qω.

And we also have dimP = 2 · r (P ) + n (P ).

Subspaces in symplectic spaces A linear subspace S of V is called symplectic if
the restriction of ω to S defines a symplectic structure on S, equivalently n(S) = 0.
Thus, S must be of even dimension. And a subspace P is called isotropic (resp.
coisotropic) if P ⊂ Pω (resp. Pω ⊂ P ), and this condition is equivalent to ω|P = 0;
namely P = N (P ) (resp. Pω = N (P )). When a subspace is both isotropic and
coisotropic, we call it Lagrangian.

In particular, one can obtain the following equivalent statements for symplectic
subspaces : (1) P is a symplectic subspace in V ; (2) n (P ) = 0; (3) dimP = 2 · r (P )
and (4) V = P ⊕ Pω.

It is well-known that the symplectic complement of a symplectic (resp. isotropic)
subspace in (V, ω) is symplectic (resp. coisotropic). As a matter of fact, the similar
statements for orthogonal complements are also true (See [2] for detail).

Lemma 1. Let P be any linear subspace in a Hermitian vector space (V, ω, J, g).
For the orthogonal complement P⊥ of P in V , we have the following.

(1) JN (P ) = N
(
P⊥)

(2) P is symplectic iff P⊥ is symplectic.
(3) P is coisotropic iff P⊥ is isotropic.
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Symplectic Grassmannians

Definition 2. Given any k ≤ n, the set of all 2k-dimensional symplectic linear
subspaces in a 2n-dimensional symplectic vector space V is called the symplectic
Grassmannian, and it is denoted as GrSp (2k, V ), or simply GrSp (2k, 2n).

Because the symplectic condition on a subspace is an open condition, a natu-
ral choice of topology for the symplectic Grassmannian is one given by being an
open subset of the real Grassmannian Gr (2k, 2n) of all 2k-dimensional real linear
subspaces in V .

We pick a metric g on V so that we obtain orthogonal decomposition V = P⊕P⊥

for each subspace P in V . By considering the orthonormal bases of P and P⊥ which
also give one on V , we identify Gr (2k, 2n) with a homogeneous space of O (2n) with
the isotropy subgroup the product of orthogonal groups of P and P⊥. Therefore,
we have Gr (2k, 2n) ' O (2n) /O (2k) O (2n− 2k). Moreover, for the same reason,
there is also a canonical identification between GrSp (2k, 2n) and the homogeneous
space Sp (2n,R) /Sp (2k,R) Sp (2n− 2k,R) and if we equip a complex vector space
(V, J) with a Hermitian metric g, then the complex Grassmannian GrC (k, n) can
be identified with U (n) /U (k) U (n− k).

Therefrom we have the canonical inclusions

GrC (k, n) ⊂ GrSp (2k, 2n) ⊂ Gr (2k, 2n)

correspond to the following inclusions of homogeneous spaces

U (n)
U (k) U (n− k)

⊂ Sp (2n,R)
Sp (2k,R) Sp (2n− 2k,R)

⊂ O (2n)
O (2k)O (2n− 2k)

.

3. Retract of Symplectic Grassmannians

By Lemma 1, the symplectic Grassmannians GrSp (2k, 2n) and GrSp (2n− 2k, 2n) are
dual to each other. Thus we could restrict our attention to only those subspaces in
V which are at most half dimensional. For the rest of this section, we assume that
2k ≤ n.

In [2], Sp (2n,R) acts on V ' R2n, it also acts on Gr (2k, 2n) which is the space
of linear subspaces of V . we have a disjoint union decomposition

Gr (2k, 2n) =
k∐

r=0

Or ,
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where Or is the orbit of rank k subspaces. Ok = GrSp (2k, 2n) is the unique open
orbit in Gr (2k, 2n). In particular the complement of GrSp (2k, 2n) is a hypersurface
in Gr (2k, 2n).

On the other hands, we recall 1
k!ω

k is a calibration satisfying the Wirtinger’s
inequality which is ∣∣∣∣

1
k!

ωk (ς)
∣∣∣∣ ≤ 1 for all ς ∈ Gr (2k, 2n) ,

and equality sign holds if and only if ς is complex subspace, i.e. ς ∈ GrC (k, n) (see
[1]). Here ωk (ς) denotes

ωk (e1 ∧ e2... ∧ e2k)

where e1, e2, ..., e2k is an oriented orthonormal basis of ς. Equivalently, ωk

k! is a
calibration with contact set GrC (k, n). Note we have

0 <

∣∣∣∣
1
k!

ωk (ς)
∣∣∣∣ ≤ 1 for all ς ∈ GrSp (2k, 2n) .

In the below, we show that GrC (k, n) is actually a strong deformation retract of
GrSp (2k, 2n).

ω-basis and ω-decomposition of symplectic subspaces

Lemma 3. Let (V, ω, J, g) be a 2n-dimensional Hermitian vector space. For any
2k-dimensional symplectic subspace S in V , there is an ordered orthonormal basis
{u1, v1, ..., uk, vk} on S such that

ω (u1, v1) ≥ ω (u2, v2) ≥ ... ≥ ω (uk, vk) > 0

and ω-orthogonal for other pairs in the basis.

Proof. For each oriented pair of orthonormal vectors u and v in S, we consider

ω (u, v) = g (Ju, v) .

And there is a maximizing oriented orthonormal pair of vectors u1 and v1 in S satisfying
0 < g (Ju1, v1) ≤

√
g (Ju1, Ju1) g (v1, v1) = 1. Here, g (Ju1, v1) is nonzero because

S is symplectic.
For each unit vector w in S∩ span {u1, v1}⊥, we observe that the function

f (θ) := g (Ju1, cos θv1 + sin θw)

has a maximum value at θ = 0 and hence the derivative of f at θ = 0 vanishes,
0 = f ′ (0) = g (Ju1, w), i.e. w ⊥ Ju1. Similarly, we also obtain w ⊥ Jv1. Therefore
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any g-orthogonal vector w to span {u1, v1} is also ω-orthogonal, and a maximizing
pair (u1, v1) is isolated.

By Lemma 1, S∩ span {u1, v1}⊥ is symplectic. Thus we can repeat the above pro-
cess for S∩ span {u1, v1}⊥ and obtain an ordered orthonormal basis {u1, v1, ..., uk, vk}
of S such that

ω (u1, v1) = g (Ju1, v1) ≥ g (Ju2, v2) ≥ ... ≥ g (Juk, vk) > 0,

and each pair of vectors in the basis is ω-orthogonal except (ui, vi) i = 1, ..., k. ¤

Because the value of g (Jui, vi) can be repeated, we give a refined index to the
basis in the above Lemma 3 so as to have the following definition.

Definition 4. Let (V, ω, J, g) be a 2n-dimensional Hermitian vector space. For any
2k-dimensional symplectic subspace S in V , an ordered orthonormal basis

{
u1

1, v
1
1, ..., u

1
a1

, v1
a1

, u2
1, v

2
1, ..., u

2
a2

, v2
a2

, ..., um
am

, vm
am

}

on S such that

1 ≥ λ1 > λ2 > ... > λm > 0

where λi := ω
(
ui

1, v
i
1

)
= ... = ω

(
ui

ai
, vi

ai

)
, i = 1, ..., m, and ω-orthogonal for other

pairs in the basis is called a ω-basis. Moreover, we call each

Sλi := span
{
ui

1, v
i
1, ..., u

i
ai

, vi
ai

}

in S a λi-component of S and S = Sλ1 ⊕ ...⊕Sλm a ω-decomposition (or symplectic
decomposition) of S.

Remark. The referee comments that the ω-decomposition is simply the decomposi-
tion of the eigenspaces of A2, where A is the non-degenerate skew-symmetric matrix
associated to the symplectic form ω.

It is natural to ask the uniqueness of ω-decomposition of a symplectic subspace
S in (V, ω, J, g). At first, we consider the following Lemma.

Lemma 5. Let S be a 2k-dimensional symplectic subspace in a 2n-dimensional
Hermitian vector space (V, ω, J, g) and let

B :=
{
u1

1, v
1
1, ..., u

1
a1

, v1
a1

, u2
1, v

2
1, ..., u

2
a2

, v2
a2

, ..., um
am

, vm
am

}

be a ω-basis on S as in Definition 4. If u, v are ordered orthonormal vectors in
S with ω (u, v) = λ1, then span {u, v} ⊂ Sλ1.
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Proof. By applying the ω-decomposition of S given by the basis B, u can be written
as u = a0u0 + a+u+ where u0 and v+ are orthonormal vectors in Sλ1 and

⊕
i>1 Sλi ,

respectively. Since u is a unit vector, the coefficients a0 and a+ satisfy a2
0 + a2

+ = 1.
Similarly, v can be written as v = b0v0 + b+v+, and we have b2

0 + b2
+ = 1.

Since Sλ1 and
⊕

i>1 Sλi are also ω-orthogonal, we get ω (u0, v+) = ω (v0, u+) = 0,
and we obtain

λ2
1 = |ω (u, v)|2 = |a0b0ω (u0, v0) + a+b+ω (u+, v+)|2

≤ (
a2

0 + a2
+

) (
(b0ω (u0, v0))

2 + (b+ω (u+, v+))2
)

≤
(
(b0λ1)

2 + (b+λ2)
2
)
≤ (

b2
0 + b2

+

)
λ2

1 = λ2
1.

Here we use the fact that the value of ω on each Sλi is in [−λi, λi] so that we have
ω2 (u0, v0) ≤ λ1 and ω2 (u+, v+) ≤ λ2. To get the equality in the above, we need
a+ = b+ = 0 so that u and v are in Sλ1 . This gives the Lemma 5. ¤

By applying Lemma 5 inductively, we conclude the following Theorem.

Theorem 6. For each 2k-dimensional symplectic subspace S in a 2n-dimensional
Hermitian vector space (V, ω, J, g), the ω-decomposition of S is uniquely determined.

Now, for each symplectic subspace S, we define an 1-paramameter family of
symplectic subspaces which in fact gives a path from [S] in GrSp (2k, 2n) to an
element in GrC (k, n) ⊂ GrSp (2k, 2n).

Theorem 7. For each 2k-dimensional symplectic subspace S in a 2n-dimensional
Hermitian vector space (V, ω, J, g), there is an 1-parameter family of symplectic sub-
spaces S (t), t ∈ [0, 1] in V such that S (0) = S and S (1) is a complex subspace in
V . Moreover, it is uniquely determined by the ω-decomposition of S.

Proof. By Lemma 3, we obtain a ω-basis {u1, v1, ..., uk, vk} of S such that

g (Ju1, v1) ≥ g (Ju2, v2) ≥ ... ≥ g (Juk, vk) > 0,

and S = span {u1, v1} ⊕ ...⊕ span {uk, vk}. And for each 0 ≤ t ≤ 1 and i = 1, ..., k,
we define

Ui (t) := cos
(π

2
t
)

ui + sin
(π

2
t
) vi + Jui√

g (vi + Jui, vi + Jui)

Vi (t) := cos
(π

2
t
)

vi + sin
(π

2
t
) −ui + Jvi√

g (−ui + Jvi,−ui + Jvi)

and consider
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S (t) := span {U1 (t) , V1 (t) , ..., Uk (t) , Vk (t)} .

One can check that S (t) is symplectic for each t, and S (0) = S and S (1) is a
complex subspace in V .

To show the family is uniquely determined by the ω-decomposition of S, we need
to show that the construction of symplectic subspace S (t) is independent of the
choice of the ω-basis on S.

First, we observe {U1 (t) , V1 (t) , ..., Uk (t) , Vk (t)} is a ω-basis of S (t).
By applying

g (vi + Jui, vi + Jui) = g (−ui + Jvi,−ui + Jvi) = 2 + 2ω (ui, vi) and

ω (Ui (t) , Vi (t)) = cos2
(π

2
t
)

ω (ui, vi) + sin2
(π

2
t
)

> 0,

one can check that
(i) {U1 (t) , V1 (t) , ..., Uk (t) , Vk (t)} is an orthonormal basis of S (t),
(ii) ω (U1 (t) , V1 (t)) ≥ ω (U2 (t) , V2 (t)) ≥ ... ≥ ω (Uk (t) , Vk (t)) > 0, and
(iii) ω-orthogonal for other pairs in {U1 (t) , V1 (t) , ..., Uk (t) , Vk (t)}.
Thus {U1 (t) , V1 (t) , ..., Uk (t) , Vk (t)} is a ω-basis of S (t), indeed.
It is useful to note that if ω (ui, vi) = ω (uj , vj), then ω (Ui (t) , Vi (t)) = ω (Uj (t) , Vj (t)).

Therefore if span {ui, vi} and span {uj , vj} are in the same component of ω-decomposition
of S, span {Ui (t) , Vi (t)} and span {Uj (t) , Vj (t)} must be in the same component
of ω-decomposition of S(t) for each t.

Second, we want to show that all ω-basis on S produces the same S (t) at each t

having the same ω-decomposition of S(t).
Suppose {u1, v1, ..., um, vm} in the given basis {u1, v1, ..., uk, vk} forms the λ1-

component of S, i.e.

λ1 = ω (u1, v1) = ... = ω (um, vm)

and

Sλ1 = span {u1, v1, ..., um, vm} .

For another ω-basis B′ on S, by Lemma 5 B′ has an ordered orthonormal pair u, v

contained in Sλ1 with ω (u, v) = λ1. As the above, we define U (t) and V (t)

U (t) := cos
(π

2
t
)

u + sin
(π

2
t
) v + Ju√

g (v + Ju, v + Ju)
(A-1)

V (t) := cos
(π

2
t
)

v + sin
(π

2
t
) −u + Jv√

g (−u + Jv,−u + Jv)
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and we want to show that U (t) and V (t) are in span {U1 (t) , V1 (t) , ..., Um (t) , Vm (t)} for
each t.

Since u and v are in Sλ1 , we write u and v as

u = x1u1 + y1v1 + ... + xmum + ymvm

v = z1u1 + w1v1 + ... + zmum + wmvm,

where the coefficients are real numbers. Since u and v are unit vectors, we have

(A-2)
m∑

i=1

(
x2

i + y2
i

)
= 1 =

m∑

i=1

(
z2
i + w2

i

)

and because ω (u, v) = λ1, we get

λ1 = ω (u, v) = ω

(
m∑

i=1

(xiui + yivi) ,
m∑

i=1

(ziui + wivi)

)
(A-3)

=
m∑

i=1

(xiwi − yizi) ω (ui, vi) = λ1

m∑

i=1

(xiwi − yizi) .

Here we use the fact that {u1, v1, ..., um, vm} is a subset of the ω-basis producing
λ1-component in S. By combining above three equations in (A-2) and (A-3), we
obtain

0 =
m∑

i=1

(
x2

i + y2
i

)
+

m∑

i=1

(
z2
i + w2

i

)− 2
m∑

i=1

(xiwi − yizi)

=
m∑

i=1

(
(xi − wi)

2 + (yi + zi)
2
)

which implies xi = wi and yi = −zi for each i, and that u and v can be written

(A-4) u =
m∑

i=1

(xiui + yivi) , v =
m∑

i=1

(−yiui + xivi) .

Now, U (t) and V (t) can be written

U (t) = cos
(π

2
t
)

u + sin
(π

2
t
) v + Ju√

g (v + Ju, v + Ju)
(A-5)

=
m∑

i=1

xi

(
cos

(π

2
t
)

ui + sin
(π

2
t
) vi + Jui√

g (vi + Jui, vi + Jui)

)
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+
m∑

i=1

yi

(
cos

(π

2
t
)

vi + sin
(π

2
t
) −ui + Jvi√

g (vi + Jui, vi + Jui)

)

=
m∑

i=1

xiUi(t) +
m∑

i=1

yiVi(t)

V (t) = cos
(π

2
t
)

v + sin
(π

2
t
) −u + Jv√

g (−u + Jv,−u + Jv)

=
m∑

i=1

xiVi(t)−
m∑

i=1

yiUi(t)

which shows that U (t) and V (t) are in span {U1 (t) , V1 (t) , ..., Um (t) , Vm (t)}. Here
we use

g (v + Ju, v + Ju) = g (−u + Jv,−u + Jv) = 2 + 2ω (u, v) = 2 + 2ω (ui, vi)

= g (vi + Jui, vi + Jui) = g (−ui + Jvi,−ui + Jvi)

for i = 1, ..., m.
By applying this procedure inductively, we can conclude that all ω-basis on

S produces the same S (t) at each t having the same ω-decomposition of S(t). ¤

From the proof of the Theorem 7, we observe that the expression of u and v

in (A-2) is related to Sp (2k,R) ∩ O (2k) = U (k). Therefore, the set of all the ω-
bases on a 2k-dimensional symplectic subspace S is acted by block diagonal unitary
matrices in U(k) ⊂ O (2k). Thus we have the following corollary.

Corollary 8. Let S be a 2k-dimensional symplectic subspace in a 2n-dimensional
Hermitian vector space (V, ω, J, g). Suppose S has a ω-basis as in Definition 4, then
the set of all the ω-bases on S is acted by U (a1, a2, ..., am) which is the set of block
diagonal unitary matrices in U (k) = Sp (2k,R) ∩ O (2k) whose blocks have sizes
(2a1, 2a2, ..., 2am) as real matrices.

Remark. From (A-4) and (A-5) in Theorem 7, we conclude that the action of block
diagonal unitary matrices U (a1, a2, ..., am) on the set of all the ω-bases on S and
the set of all the ω-bases on S (t) is compatible via the definition of vectors at t in
(A-1).

Now we show that GrC (k, n) is a strong deformation retract of GrSp (2k, 2n),
indeed.
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Theorem 9. Let (V, ω, J, g) be a 2n-dimensional Hermitian vector space. Then the
complex Grassmannian GrC (k, n) is a strong deformation retract of the symplectic
Grassmannian GrSp (2k, 2n).

Proof. First, we take a ω-basis on S for each [S] in GrSp (2k, 2n). By applying
Theorem 7 for S and the ω-basis, we obtain an 1-parameter family S(t) of symplectic
subspaces which is uniquely determined by ω-decomposition of S. As in Theorem
7, the construction of symplectic subspace S (t) is independent of the choice of the
ω-basis on S. Therefore we have the following well defined map

GrSp (2k, 2n)× [0, 1] −→ GrSp (2k, 2n)
(S, t) 7→ S (t) .

which can be easily seen to be a strong deformation retract from GrSp (2k, 2n) to
GrC (k, n). ¤

Remark. 1. If we vary the complex structure J on V , then the corresponding
GrC (k, n) will move inside GrSp (2k, 2n) and cover the whole symplectic Grassman-
nian (see [2]).

2. Thus GrC (k, n) and GrSp (2k, 2n) are homotopically equivalent to each other.
3. The dimensions of λi-spaces Sλi in a ω-decomposition of S is preserved under

deformation.
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