EXOTIC SYMPLECTIC STRUCTURES ON $S^3 \times \mathbb{R}$

YONG SEOUNG CHO AND JIN YUE YOON

ABSTRACT. We construct exotic symplectic structures on $S^3 \times \mathbb{R}$ which is obtained by the symplectic sum of two smooth symplectic four-manifolds with exotic symplectic structures, each of which is diffeomorphic to \mathbb{R}^4 .

1. Introduction

Let ω_0 be the standard symplectic structure on \mathbb{R}^{2n} and $L \subset \mathbb{R}^{2n}$ be a closed Lagrangian submanifold. In [3], Gromov have shown the following theorem:

THEOREM (GROMOV). As a cohomology class $[\omega_0]$ is non-zero in $H^2(\mathbb{R}^{2n}, L; \mathbb{R})$. The form ω_0 has a potential ψ on \mathbb{R}^{2n} , i.e., $\omega_0 = d\psi$. Furthermore, $[\psi|_L] \neq 0$ in $H^1(L; \mathbb{R})$.

The Lagrangian submanifold L in a 2n-dimensional symplectic manifold M is called exact(non-exact) if the restriction to the Lagrangian L of the potential is exact(non-exact). Thus, in the above Theorem, L is a non-exact Lagrangian in \mathbb{R}^{2n} .

Gromov have also proved that there are no exact Lagrangian subvarieties in \mathbb{R}^{2n} , for the standard symplectic structure. Recently, Bates and Peschke [1] have explicitly endowed a manifold M diffeomorphic to \mathbb{R}^4 with a symplectic form ω admitting a Lagrangian torus T such that $[\omega] = 0$ in $H^2(M, T; \mathbb{R})$. Hence T is an exact Lagrangian. By Gromov's theorem, (M, ω) does not symplectically embed in (\mathbb{R}^4, ω_0) , such a structure ω is called an exotic symplectic structure on M.

Received February 3, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 57N13, 58F05.

Key words and phrases: symplectic four-manifolds, exotic symplectic structure, Lagrangian submanifold.

This work was supported in part by the KOSEF through the GARC at Seoul National University and BSRI-97-1424.

Let M_i (i = 1, 2) be smooth symplectic four-manifolds diffeomorphic to \mathbb{R}^4 with symplectic forms admitting Lagrangian tori $(T_1^{'})^i$ (i = 1, 2).

In section 2, we introduce the symplectic sum of these two manifolds and construct symplectic forms ω_M on the sum $M=M_1\sharp_{\psi}M_2$ from symplectic forms on the M_i (i=1,2). We first show that

Lemma 2.3. $M=M_1\sharp_{\psi}M_2\cong ((M_1-\overset{\circ}{S}_1)-K)\cup_{\varphi} ((M_2-\overset{\circ}{S}_2)-j_2(D^2))\cong S^3\times\mathbb{R}$, where $\overset{\circ}{S}_i$ are the interior surfaces of S_i on $(T_1')^i$ with the boundaries $S_i^1=j_i(\partial D^2)$ (i=1,2). Hence $H^1(T_2';\mathbb{R})\cong H^2(M,T_2';\mathbb{R})$ is an isomorphism, where T_2' is a Lagrangian surface of genus 2 in M.

In section 3, we show the process of constructing symplectic forms ω'_M on $M = M_1 \sharp_{\psi} M_2 \cong S^3 \times \mathbb{R}$ from exotic symplectic forms on two smooth symplectic four-manifolds M_i (i = 1, 2) diffeomorphic to \mathbb{R}^4 .

In section 4, we get the following two Lemmas 4.1 and 4.2 from each case of manifolds (M, ω_M) and (M, ω_M') :

LEMMA 4.1. The symplectic forms ω_M admit a non-exact Lagrangian surface T_2' of genus 2 in M and hence $[\omega_M] \neq 0$ in $H^2(M, T_2'; \mathbb{R})$.

LEMMA 4.2. The symplectic forms ω_M' admit an exact Lagrangian surface T_2 of genus 2 in M and hence $[\omega_M'] = 0$ in $H^2(M, T_2; \mathbb{R})$.

By the Lemmas 4.1 and 4.2, we can get the following Theorem 4.3.

THEOREM 4.3. The symplectic forms ω_M on the symplectic sum M of two smooth symplectic four-manifolds M_i (i=1,2) diffeomorphic to \mathbb{R}^4 with symplectic forms admitting non-exact Lagrangian tori $(T_1')^i$ (i=1,2) admit a non-exact Lagrangian surface T_2' of genus 2 and $[\omega_M] \neq 0$ in $H^2(M,T_2';\mathbb{R})$.

On the other hand, the symplectic forms ω_M' on the symplectic sum M of two smooth symplectic four-manifolds M_i (i=1,2) diffeomorphic to \mathbb{R}^4 with symplectic forms admitting exact Lagrangian tori T_1^i (i=1,2) admit an exact Lagrangian surface T_2 of genus 2 and $[\omega_M'] = 0$ in $H^2(M,T_2;\mathbb{R})$. Therefore, (M, ω_M') does not symplectically diffeomorphic to (M, ω_M) .

2. Symplectic sums

Let M_i (i=1,2) be smooth symplectic four- manifolds which are diffeomorphic to \mathbb{R}^4 . Let \mathbb{R}^4 be thought of as $\mathbb{R}^2 \times \mathbb{R}^2$ and let (r,θ) , (s,ϕ) be polar coordinates on each factor. That is, if (x_1,x_2) and (y_1,y_2) are rectangular coordinates on each factor of $\mathbb{R}^2 \times \mathbb{R}^2$, then $x_1 = r\cos\theta$, $x_2 = r\sin\theta$, $y_1 = s\cos\phi$, $y_2 = s\sin\phi$. Suppose that \mathbb{R}^4 has a standard symplectic structure $\omega_{\mathbb{R}^4} = \sum_{i=1}^2 dx_i \wedge dy_i$.

Let $T_1 = \{ (x_1, x_2, y_1, y_2) \in \mathbb{R}^4 | x_1^2 + x_2^2 = \frac{\pi}{2}, y_1^2 + y_2^2 = \frac{\pi}{2} \} = \{$

Let $T_1 = \{ (x_1, x_2, y_1, y_2) \in \mathbb{R}^{\frac{3}{4}} | x_1^2 + x_2^2 = \frac{\pi}{2}, \ y_1^2 + y_2^2 = \frac{\pi}{2} \} = \{ (\sqrt{\frac{\pi}{2}} \cos \theta, \sqrt{\frac{\pi}{2}} \sin \theta, \sqrt{\frac{\pi}{2}} \cos \phi, \sqrt{\frac{\pi}{2}} \sin \phi) \in \mathbb{R}^4 | 0 \le \theta < 2\pi, \ 0 \le \phi < 2\pi \}.$ Let $j: T_1 \to \mathbb{R}^4$ be an embedding defined by $j(r \cos \theta, r \sin \theta, s \cos \phi, s \sin \phi) = (r \cos \theta, s \cos \phi, r \sin \theta, s \sin \phi)$. Then $T_1' = j(T_1)$ is a torus defined by $x_1^2 + y_1^2 = \frac{\pi}{2}$ and $x_2^2 + y_2^2 = \frac{\pi}{2}$, and a closed Lagrangian in \mathbb{R}^4 with respect to $\omega_{\mathbb{R}^4}$ since $\omega_{\mathbb{R}^4}|_{T_1'} = j^*\omega_{\mathbb{R}^4}$ and

$$j^*\omega_{\mathbb{R}^4}(m)(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi})$$

$$= \omega_{\mathbb{R}^4}(j(m))(dj(\frac{\partial}{\partial \theta}|_m), dj(\frac{\partial}{\partial \phi}|_m))$$

$$= (dx_1 \wedge dy_1 + dx_2 \wedge dy_2)(j(m))$$

$$(-r\sin\alpha \cdot \frac{\partial}{\partial x_1}|_{j(m)} - r\cos\alpha \cdot \frac{\partial}{\partial y_1}|_{j(m)},$$

$$-s\sin\beta \cdot \frac{\partial}{\partial x_2}|_{j(m)} + s\cos\beta \cdot \frac{\partial}{\partial y_2}|_{j(m)})$$

$$= -r\sin\alpha \cdot 0 - 0 \cdot r\cos\alpha + 0 \cdot s\cos\beta + s\sin\beta \cdot 0$$

$$= 0$$

for all $m = (r \cos \theta, r \sin \theta, s \cos \phi, s \sin \phi) \in T_1$.

By Gromov's theorem in section 1, $[\omega_{\mathbb{R}^4}] \neq 0$ in $H^2(\mathbb{R}^4, T_1'; \mathbb{R})$ and $[\sum_{i=1}^2 x_i dy_i|_{T_1'}] \neq 0$ in $H^1(T_1'; \mathbb{R})$. If we take φ_i as diffeomorphism from M_i to \mathbb{R}^4 such that $\varphi_i^{-1}(T_1') = (T_1')^i$ and if we set $\omega_{M_i} = \varphi_i^* \omega_{\mathbb{R}^4}$ as symplectic structures on M_i (i=1,2), then $(T_1')^i$ are closed Lagrangian tori in M_i since $\omega_{M_i}|_{(T_1')^i} = \varphi_i^* \omega_{\mathbb{R}^4}|_{(T_1')^i} = \omega_{\mathbb{R}^4}|_{T_1'} = 0$. Moreover, $(T_1')^i$ are non-exact Lagrangian tori in M_i since $[\varphi_i^*(\sum_{i=1}^2 x_i dy_i)|_{(T_1')^i}]$

$$= [\sum_{i=1}^{2} x_i dy_i|_{T_1^{'}}] \neq 0 \text{ in } H^1((T_1^{'})^i; \mathbb{R}). \text{ By isomorphisms } H^1((T_1^{'})^i; \mathbb{R}) \\ \cong H^2(M_i, (T_1^{'})^i; \mathbb{R}), [\omega_{M_i}] \neq 0 \text{ in } H^2(M_i, (T_1^{'})^i; \mathbb{R}).$$

Let D^2 be the standard closed 2-dimensional disk of radius $\sqrt{\pi}$ with symplectic structure $\omega_{D^2} = dx_1 \wedge dy_1$. Let $h: (D^2, \partial D^2) \to (\mathbb{R}^4, T_1')$ be defined by $h(x_1, y_1) = (\frac{x_1}{\sqrt{2}}, \frac{y_1}{\sqrt{2}}, \frac{y_1}{\sqrt{2}}, -\frac{x_1}{\sqrt{2}})$, and let $j_i = \varphi_i^{-1} \circ h: (D^2, \partial D^2) \to (M_i, (T_1')^i)$. Then j_i are symplectic embeddings satisfying $j_i(\partial D^2) \subset (T_1')^i$ and $(j_i(D^2) - j_i(\partial D^2)) \cap (T_1')^i = \emptyset$ (i = 1, 2) since $j_i^* \omega_{M_i} = j_i^* \varphi_i^* \omega_{\mathbb{R}^4} = (\varphi_i \circ j_i)^* \omega_{\mathbb{R}^4} = h^* \omega_{\mathbb{R}^4}$ and

$$\begin{array}{lll} h^*\omega_{\mathbb{R}^4} &=& h^*(dx_1\wedge dy_1 \ + \ dx_2\wedge dy_2) \\ &=& \frac{1}{\sqrt{2}}\ dx_1\wedge \frac{1}{\sqrt{2}}dy_1 \ + \ \frac{1}{\sqrt{2}}dy_1\wedge (-\frac{1}{\sqrt{2}})dx_1 \\ &=& \frac{1}{2}dx_1\wedge dy_1 \ - \ \frac{1}{2}dy_1\wedge dx_1 \\ &=& dx_1\wedge dy_1 \\ &=& \omega_{D^2}. \end{array}$$

We can choose a fiber-orientation reversing bundle isomorphism $\psi: \nu_1 \to \nu_2$. We choose fiber metrics on ν_i such that ψ is isometric. Let ν_i^0 be disk bundles in ν_i (i=1,2). Then there is an orientation-preserving diffeomorphism $\varphi=\iota\circ\psi:\nu_1^0-j_1(D^2)\to\nu_2^0-j_2(D^2)$, where the map $\iota:\nu_2^0-\{0-section\}\to\nu_2^0-\{0-section\}$ is defined by $\iota(x)=(\frac{1}{\pi||x||^2}-1)^{1/2}x$.

Now we construct suitable models for tubular neighborhoods of the submanifolds $j_i(D^2)$ in M_i (i=1, 2). Let ν_i denote the SO(2)-vector bundles over D^2 and let ν_i^0 denote the sub-disk bundles of radius $\pi^{-1/2}$ (i=1, 2). Let $\pi: S \to D^2$ be the 2-sphere bundle obtained by gluing together ν_1^0 and ν_2^0 using ι defined in the above statement. We may take the sphere bundle S over D^2 as $D^2 \times S^2$. Let $i_0, i_\infty: D^2 \to S$ be 0-sections of ν_1^0 and ν_2^0 with images D_0 and D_∞ , respectively. Thus, $\nu_1^0 = S - D_\infty$.

Considering cylindrical polar coordinates (θ, x_3) on $S^2 - \{(0, 0, \pm 1)\}$ where $0 \le \theta < 2\pi$ and $-1 \le x_3 \le 1$, we can take a symplectic form ω_{S^2} on S^2 as the area form $\omega_{S^2} = d\theta \wedge dx_3$ induced by the Euclidean metric. Hence we may choose a closed 2-form η on the sphere bundle

 $S \cong D^2 \times S^2$ over D^2 as ω_{S^2} . Then η has the following properties: $i_0^* \eta = \eta|_{i_0(D^2)} = \eta|_{D_0} = 0$ and $\eta|_{S^2} = d\theta \wedge dx_3$ is the symplectic form. By the method of Thurston[8], we can thus construct the set of symplectic forms on S as $\{\omega_t = \pi^* \omega_{D^2} + t \cdot \eta \mid 0 < t \leq t_1\}$ for some sufficiently small constant $t_1 > 0$.

On the other hand, there is a smooth orientation-preserving embedding $f: \nu_1^0 \to M_1$ (into any preassigned neighborhood of $j_1(D^2)$) with $f \circ i_0 = j_1$. And $f|_{D_0}: (D_0, \omega_{t_1}) \to (M_1, \omega_{M_1})$ is symplectic, since $i_0^*\omega_t = i_0^*\pi^*\omega_{D^2} + t \cdot i_0^*\eta = (\pi \circ i_0)^*\omega_{D^2} = \omega_{D^2}$, $f \circ i_0 = j_1$ and j_1 is symplectic. Thus we get the following Theorem 2.1 which is the same result as Gompf's.

THEOREM 2.1. Let (ν_1^0, ω_t) , (M_1, ω_{M_1}) , D_0 and $f: \nu_1^0 \to M_1$ be the same as above. Then there is a compactly supported isotopy rel D_0 from f to an embedding $\tilde{f}: \nu_1^0 \to M_1$ that is symplectic in a neighborhood of D_0 .

Proof. It can be proved by the same way as the proof of Lemma 2.1 in [2].

Weinstein's integral operator $I:\Omega^2(\nu_1^0)\to\Omega^1(\nu_1^0)$ is defined by $I(\eta)=\int_0^1\pi_s^*(X_s\lrcorner\eta)ds$, where $\pi_s:\nu_1^0\to\nu_1^0$ $(0\le s\le 1)$ is a multiplication by s in this bundle structure, $X_s=\frac{d}{ds}\pi_s$ the corresponding vector field, and \lrcorner denotes contraction. The key property of I is that if η satisfies $d\eta=0$ and $i_0^*\eta=0$, then $dI(\eta)=\eta$. Set $\varphi=I(\eta)$, and define Y_t by $Y_t\lrcorner\omega_t=-\varphi,\ 0< t\le t_1$. Then Y_t $(0< t\le t_1)$ is a time-dependent vector field on ν_1^0 that vanishes on D_0 and SO(2)-invariant. For any SO(2)-invariant compact subset $K\subset\nu_1^0$ and fixed $t_0\in(0,t_1],$ Y_t integrates to an SO(2)-equivariant flow $F:K\times J\to\nu_1^0$, where J is some neighborhood of t_0 in $(0,t_1]$ and $F_{t_0}=id_K$. Since $\frac{d}{dt}(F_t^*\omega_t)=dF_t^*(Y_t\lrcorner\omega_t)+F_t^*(\frac{d}{dt}\omega_t)=-F_t^*d\varphi+F_t^*\eta=-F_t^*\eta+F_t^*\eta=0$, $F_t^*\omega_t$ is independent of t.

For $x \in \nu_1^0$, let D(x) be the closed disk in the fiber $\pi^{-1}(\pi(x))$ that is bounded by the SO(2)-orbit of x. Let $A(x) = \int_{D(x)} \eta$ be the η -area of D(x). Then $A: \nu_1^0 \to [0,1)$ is a smooth, SO(2)-invariant, proper surjection that increases radially. The ω_t -area of D(x) is given by $\int_{D(x)} \omega_t = \int_{D(x)} (\pi^* \omega_{D^2} + t \cdot \eta) = t \int_{D(x)} \eta = t \cdot A(x)$. Fix $x \in \nu_1^0$ and

 $t_0 \in (0,t_1]$, and integrate Y_t as above to obtain a flow of D(x) with $F_{t_0} = id_{D(x)}$. Let $x(t) = F_t(x)$ be the trajectory of x, with $x(t_0) = x$. Since F is SO(2)-equivariant, $\partial F_t D(x) = \partial D(F_t(x)) = \partial D(x(t))$. Thus the ω_t -area of D(x(t)) is $t \cdot A(x(t)) = \int_{D(x(t))} \omega_t = \int_{F_t D(x)} \omega_t = \int_{D(x)} F_t^* \omega_t = \int_{D(x)} F_{t_0}^* \omega_{t_0} = t_0 \cdot A(x)$, and hence $A(x(t)) = \frac{t_0}{t} \cdot A(x)$, which tells us that all flow lines of Y_t are decreasing in A. Since $A: \nu_1^0 \to [0,1)$ is proper, flow lines cannot escape from ν_1^0 as t increases, and the flow is globally defined as a map $F: \nu_1^0 \times [t_0,t_1] \to \nu_1^0$.

For any $x \in \nu_1^0$, A(x) < 1, so $A(F_{t_1}(x)) = A(x(t_1)) < \frac{t_0}{t_1}$. Thus, we may arrange for $F_{t_1}(\nu_1^0)$ to lie in any preassigned neighborhood V of D_0 by choosing t_0 sufficiently small. Since $F_{t_1}: (\nu_1^0, \omega_{t_0}) \to (\nu_1^0, \omega_{t_1})$ is symplectic, we get the following result with the neighborhood $V = \nu_1^0$ of D_0 : For the neighborhood ν_1^0 of D_0 in (ν_1^0, ω_{t_1}) , there is a t_0 with $0 < t_0 \le t_1$ such that, for all positive $t \le t_0$, (ν_1^0, ω_t) embeds symplectically in ν_1^0 rel D_0 . From the above fact and Theorem 2.1, we can get a symplectic embedding $\hat{f}: (\nu_1^0, \omega_t) \to (M_1, \omega_{M_1})$ with $\hat{f} \circ i_0 = j_1$, for any fixed $t \in (0, t_0]$ with t_0 suitably small, and \hat{f} is isotopic rel D_0 to f.

We would like to find a similar map from a neighborhood of D_{∞} in (S, ω_t) into a neighborhood of $j_2(D^2)$ in M_2 . By construction, $\nu_2^0 =$ $S-D_0$ canonically identifies the normal bundles ν_{∞} and ν_0 of D_{∞} and D_0 (reversing fiber-orientation). We also have isomorphisms f_* : ν_0 $\rightarrow \nu_1$ and $\psi : \nu_1 \rightarrow \nu_2$ (the latter reversing orientation). Let $\psi'': \nu_{\infty} \rightarrow \nu_2$ denote the composite of these (which preserves orientation). Then there is a smooth embedding $g: S-D_0 \rightarrow M_2$ (independent) dent of t) with $g \circ i_{\infty} = j_2$ and $g_* = \psi''$ on ν_{∞} . Clearly, $M = M_1 \sharp_{\psi}$ M_2 could be constructed as a smooth manifold by composing f^{-1} and g. However, we cannot perturb g to be symplectic, since we have $i_{\infty}^*\omega_t = \omega_{D^2} + t \cdot i_{\infty}^*\eta$. To remedy this, we choose a smooth map $\mu: S \to S$ that radially rescales ν_1^0 , fixing a neighborhood of D_{∞} and collapsing a neighborhood of D_0 onto D_0 . By composing g^{-1} and μ , we may assume that g^{-1} extends to a smooth map $\lambda: N \to S$ with $\lambda(N - g(S - D_0)) \subset D_0$, where N is a neighborhood of $\overline{g(S-D_0)}$. Let $\zeta = \lambda^* \eta$. Then ζ is a closed 2-form that vanishes on $N - g(S - D_0)$, since $i_0^* \eta = 0$. And ζ can be extended

over M_2 as follows:

$$\zeta = \begin{cases} \lambda^* \eta & \text{over } g(S - D_0) \\ 0 & \text{over } M_2 - g(S - D_0). \end{cases}$$

 ζ is determined by g and η (so it is independent of λ and t) and $j_2^*\zeta=i_\infty^*\eta$. Let's replace ω_{M_2} by $\tilde{\omega}_{M_2}=\omega_{M_2}+t\cdot\zeta$. Since non-degeneracy is an open condition, $\tilde{\omega}_{M_2}$ will be symplectic on M_2 provided that $0< t \leq t_0$ for t_0 sufficiently small. Furthermore, $g|_{D_\infty}:(D_\infty,\ \omega_t) \to (M_2,\ \tilde{\omega}_{M_2})$ is a symplectic embedding. Hence we can get the same result as Theorem 2.1 for the smooth embedding g, and by this result, there is a compactly supported isotopy rel D_∞ from g to $\tilde{g}:(S-D_0,\ \omega_t) \to (M_2,\ \tilde{\omega}_{M_2})$ which is symplectic on a neighborhood U_∞ of D_∞ .

Now we perform the symplectic summation. Let $W = \tilde{g}(U_{\infty} - D_{\infty})$ be a neighborhood of one end of the open manifold $(M_2 - \mathring{S}_2) - j_2(D^2)$, where $\overset{\circ}{S}_i$ are the interior surfaces of S_i on $(T_1')^i$ with the boundaries $S_i^1 = j_i(\partial D^2)$ (i = 1, 2). The map $\tilde{g}^{-1} : (W, \tilde{\omega}_{M_2}) \to (\nu_1^0, \omega_t)$ symplectically identifies the ends of $((M_2 - \overset{\circ}{S}_2) - j_2(D^2), \tilde{\omega}_{M_2})$ and (ν_1^0, ω_t) . Let $K = \hat{f}(\nu_1^0 - U_{\infty})$ and let φ be the inverse of the symplectic embedding $\hat{f} \circ \tilde{g}^{-1} : (W, \tilde{\omega}_{M_2}) \to (M_1, \omega_{M_1})$. We use φ to glue together the two ends of $((M_1 - \overset{\circ}{S}_1) - K, \omega_{M_1})$ and $((M_2 - \overset{\circ}{S}_2) - j_2(D^2), \tilde{\omega}_{M_2})$. The resulting symplectic manifold is diffeomorphic to M. As in [2], we can get a unique isotopy class of symplectic forms on M as follows:

$$\omega_{M} = \begin{bmatrix} \omega_{M_{1}} & \text{on } M_{1} - \nu_{1}^{0} \\ \{(1 - s)\omega_{M_{1}} + s \cdot \pi^{*}\omega_{D^{2}} \mid 0 \leq s < 1\} & \text{on } cl(\nu_{1}^{0}) \\ \{\tilde{\omega}_{M_{2}} = \omega_{M_{2}} + t \cdot \zeta \mid 0 < t \leq t_{0}\} & \text{on } M_{2} - j_{2}(D^{2}). \end{bmatrix}$$

THEOREM 2.2. In the above notation, we have the following results:

(1) The symplectic sum (M, ω_M) is a smooth symplectic four-manifold with symplectic structures ω_M ,

- (2) $T_2^{'} = (T_1^{'})^1 \sharp (T_1^{'})^2$ is a non-exact Lagrangian surface of genus 2 in M with respect to ω_M ,
- (3) $[\omega_M] \neq 0 \text{ in } H^2(M, T_2'; \mathbb{R}).$
- ((2) and (3) will be shown in Lemma 4.1.)

Lemma 2.3. $M=M_1\sharp_{\psi}M_2\cong ((M_1-\overset{\circ}{S}_1)-K)\cup_{\varphi} ((M_2-\overset{\circ}{S}_2)-j_2(D^2))\cong S^3\times\mathbb{R}$, where $\overset{\circ}{S}_i$ are the interior surfaces of S_i on $(T_1^{'})^i$ with the boundaries $S_i^1=j_i(\partial D^2)$ (i=1,2). Hence $H^1(T_2^{'};\mathbb{R})\cong H^2(M,T_2^{'};\mathbb{R})$ is an isomorphism, where $T_2^{'}$ is a Lagrangian surface of genus 2 in M.

Proof. We know that $M \cong ((M_1 - \overset{\circ}{S}_1) - K) \cup_{\varphi} ((M_2 - \overset{\circ}{S}_2) - j_2(D^2))$ $\cong S^3 \times (-\infty, 0) \cup_{\varphi} S^3 \times (0, \infty) \cong S^3 \times (-\infty, 0] \cup_{\varphi} S^3 \times [0, \infty).$ Since $\varphi = (\hat{f} \circ \tilde{g}^{-1})^{-1} = \tilde{g} \circ \hat{f}^{-1}$ glues together the two ends of $((M_1 - \overset{\circ}{S}_1) - K, \omega_{M_1})$ and $((M_2 - \overset{\circ}{S}_2) - j_2(D^2), \tilde{\omega}_{M_2}), M \cong S^3 \times \mathbb{R}.$

3. The construction of an exotic symplectic form

In this section we would like to construct symplectic forms on $S^3 \times \mathbb{R}$ from exotic symplectic forms on two smooth symplectic manifolds M_i (i=1,2) diffeomorphic to \mathbb{R}^4 . In section 4 we will prove that the symplectic forms are exotic.

Let $\psi \in \Omega^1(\mathbb{R}^3)$ be such that the pull-back of ψ to the torus vanishes and $d\psi \neq 0$, and let $\chi \in \Omega^1(\mathbb{R}^3)$ be such that $\chi \wedge d\psi$ is a volume on \mathbb{R}^3 . Let $\rho = \psi + x^4 \cdot \chi \in \Omega^1(\mathbb{R}^4)$. We define τ to be the smooth one-form on \mathbb{R}^4 given by

$$\tau = r^2 \cos r^2 d\theta + s^2 \cos s^2 d\phi,$$

where \mathbb{R}^4 may be thought of as $\mathbb{R}^2 \times \mathbb{R}^2$ and (r, θ) , (s, ϕ) are polar coordinates on each factor.

For details, we take $\psi = (p^{-1})^*i^*\tau$, $\chi = (p^{-1})^*i^*\xi$, and $\xi = *(d\tau \wedge d\phi^2)$, where S^3 is a three sphere defined by $r^2 + s^2 = \phi^2$, $i: S^3 \to \mathbb{R}^4$ the standard embedding, and $p: S^3 - \{x\} \to \mathbb{R}^3$ the stereographic projection, where x is a point in $S^3 - T_1$. Then there is an open ball B in

 \mathbb{R}^3 containing $p(T_1)$ and an interval I about $x^4=0$ so that $\omega'_{M'}(=d\rho)$ is a symplectic form on a smooth symplectic four-manifold $M'(\cong B \times I)$ diffeomorphic to \mathbb{R}^4 . We see that τ vanishes only on the torus T_1 defined by $x_1^2 + x_2^2 = r^2 = \pi/2$ and $y_1^2 + y_2^2 = s^2 = \pi/2$. T_1 is an exact Lagrangian torus in M', since $\rho \mid_{T_1} = 0$ and $\omega'_{M'} \mid_{T_1} = d\rho \mid_{T_1} = 0$. By an isomorphism $H^1(T_1; \mathbb{R}) \cong H^2(B \times I, T_1; \mathbb{R})$, the relative class $[\omega'_{M'}]$ vanishes in $H^2(B \times I, T_1; \mathbb{R})$. We call this structure $\omega'_{M'}$ an exotic symplectic structure on M'. By the same procedure as in the section 2 with $h: (D^2, \partial D^2) \to (\mathbb{R}^4, T_1)$ defined by $h(x_1, y_1) = (\frac{x_1}{\sqrt{2}}, \frac{y_1}{\sqrt{2}}, \frac{y_1}{\sqrt{2}}, -\frac{x_1}{\sqrt{2}})$, we can get a unique isotopy class of symplectic forms on $M = M_1 \sharp_{\psi} M_2$, where $\omega'_{M_i} = d\rho_i$ are exotic symplectic forms on M_i as follows:

$$\omega_M' = \begin{bmatrix} \omega_{M_1}' = d\rho_1 & \text{ on } M_1 - \nu_1^0 \\ \{(1-s)\omega_{M_1}' + s \cdot \pi^* \omega_{D^2} \mid 0 \le s < 1\} & \text{ on } cl(\nu_1^0) \\ \{\tilde{\omega}_{M_2}' = \omega_{M_2}' + t \cdot \zeta \mid 0 < t \le t_0\} & \text{ on } M_2 - j_2(D^2). \end{bmatrix}$$

THEOREM 3.1. In the above notations, we have the following results:

- (1) The symplectic sum (M, ω'_M) is a smooth symplectic fourmanifold with symplectic structures ω'_M ,
- (2) $T_2 = T_1^1 \sharp T_1^2$ is an exact Lagrangian surface of genus 2 in M with respect to ω'_M ,
- (3) $[\omega'_{M}] = 0$ in $H^{2}(M, T_{2}; \mathbb{R})$.
- ((2) and (3) will be shown in Lemma 4.2.)

We also have the following Lemma 3.2 which is similar to Lemma 2.3.

LEMMA 3.2. $H^1(T_2;\mathbb{R}) \cong H^2(M,T_2;\mathbb{R})$ is an isomorphism, where T_2 is a Lagrangian surface of genus 2 in M.

4. Exotic symplectic structures

Let (M, ω_M) be the smooth symplectic four-manifold in Theorem 2.2. (1).

LEMMA 4.1. The symplectic forms ω_M admit a non-exact Lagrangian surface T_2' of genus 2 in M and hence $[\omega_M] \neq 0$ in $H^2(M, T_2'; \mathbb{R})$.

Proof. Let $S_i^1 = j_i(\partial D^2) \cap (T_1')^i$ (i = 1, 2). Let's divide the surface T_2' into 3 parts $[T_2' \cap (M_1 - \nu_1^0)] \cup [T_2' \cap cl(\nu_1^0)] \cup [T_2' \cap (M_2 - j_2(D^2))]$. In the first part, $ω_{M_1}|_{T_2' \cap (M_1 - \nu_1^0)} = 0$, since $T_2' \cap (M_1 - \nu_1^0) \subset (T_1')^1$ and $ω_{M_1}|_{(T_1')^1} = 0$. In the second part, $ω_{M_1}|_{T_2' \cap cl(\nu_1^0)} = 0$, since $T_2' \cap cl(\nu_1^0) = S_1^1 \subset (T_1')^1$. And $π^*ω_{D^2}|_{T_2' \cap cl(\nu_1^0)} = ω_{D^2}|_{S_1^1} = 0$. Thus $(1 - s)ω_{M_1} + s \cdot π^*ω_{D^2}|_{T_2' \cap cl(\nu_1^0)} = 0$ (0 ≤ s < 1). In the third part, $ω_{M_2}|_{T_2' \cap (M_2 - j_2(D^2))} = 0$, since $T_2' \cap (M_2 - j_2(D^2)) \subset (T_1')^2$ and $ω_{M_2}|_{(T_1')^2} = 0$. Also ζ is zero on $T_2' \cap (M_2 - j_2(D^2))$, since ζ is zero on $M_2 - g(S - D_0)$ and $T_2' \cap (M_2 - j_2(D^2)) \subset M_2 - g(S - D_0)$. Thus $\tilde{ω}_{M_2}|_{T_2' \cap (M_2 - j_2(D^2))} = 0$ and hence, T_2' is a Lagrangian surface of genus 2 in $(M = M_1 \sharp_{\psi} M_2, ω_M)$.

Let's examine the exactness of the Lagrangian surface T_2' in M. $\varphi_i^*(\sum_{i=1}^2 x_i dy_i)|_{(T_1')^i} = \sum_{i=1}^2 x_i dy_i|_{T_1'} = j^*(\sum_{i=1}^2 x_i dy_i)$ can be locally written by $\frac{\pi}{2}(\sin\theta\cos\phi - \cos\theta\sin\phi)d\phi$. Let S_0 be a meridian in the torus T_1' with $\theta=0$. Then we have

$$\int_{S_0} j^* (\sum_{i=1}^2 x_i dy_i) = -\frac{\pi}{2} \int_0^{2\pi} \sin \phi d\phi$$
$$= \frac{\pi}{2} \cdot 4 [\cos \phi]_0^{\frac{\pi}{2}}$$
$$\neq 0.$$

Since $\int_{\varphi_1^{-1}(j(S_0))} \varphi_1^*(\sum_{i=1}^2 x_i dy_i)|_{T_2'\cap (M_1-\nu_1^0)} = \int_{S_0} j^*(\sum_{i=1}^2 x_i dy_i) \neq 0$, $\varphi_1^*(\sum_{i=1}^2 x_i dy_i)|_{T_2'\cap (M_1-\nu_1^0)}$ is not exact. Thus T_2' is a non-exact Lagrangian in M. By the isomorphism in Lemma 2.3, $[\omega_M] \neq 0$ in $H^2(M, T_2'; \mathbb{R})$.

Let (M, ω_M') be the smooth symplectic four-manifold in Theorem 3.1.(1).

LEMMA 4.2. The symplectic forms ω_M' admit an exact Lagrangian surface T_2 of genus 2 in M and hence $[\omega_M'] = 0$ in $H^2(M, T_2; \mathbb{R})$.

Proof. By the same method shown in the first part of the proof of Lemma 4.1, we can easily see that $\omega_M'|_{T_2} = 0$ and hence T_2 is also a Lagrangian surface of genus 2 in $(M = M_1 \sharp_{\psi} M_2, \ \omega_M')$.

Let's examine the exactness of the Lagrangian surface T_2 in M. $\rho_1|_{T_2\cap(M_1-\nu_1^0)}=0$, since $T_2\cap(M_1-\nu_1^0)\subset T_1^1$ and $\rho_1|_{T_1^1}=0$. Moreover $\pi^*(x_1dy_1)|_{T_2\cap cl(\nu_1^0)}=x_1dy_1|_{S_1^1}$ is an exact form. Therefore $(1-s)\rho_1+s\cdot\pi^*(x_1dy_1)|_{T_2\cap cl(\nu_1^0)}$ is exact. We know that $\tilde{\omega}_{M_2}|_{T_2\cap(M_2-j_2(D^2))}=d\rho_2|_{T_2\cap(M_2-j_2(D^2))}$, since ζ is zero on $T_2\cap(M_2-j_2(D^2))\subset M_2-g(S-D_0)$ and that $\rho_2|_{T_2\cap(M_2-j_2(D^2))}=0$, since $T_2\cap(M_2-j_2(D^2))\subset T_1^2$ and $T_2\cap(M_2-j_2(D^2))\subset T_2\cap(M_2-j_2(D^2))$ is an exact Lagrangian in $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ and the $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ is an exact Lagrangian in $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ is an exact Lagrangian in $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ is exact Lagrangian in $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ and $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ is exact Lagrangian in $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ and $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ is exact Lagrangian in $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ and $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ is exact Lagrangian in $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ and $T_2\cap(M_2-j_2(D^2))\subset T_1\cap(M_2-j_2(D^2))$ is exact Lagrangian in $T_2\cap(M_2-j_2(D^2))$ is exact $T_2\cap(M_2-j_2$

By the Lemmas 4.1, 4.2, we can get the following Theorem 4.3.

THEOREM 4.3. The symplectic forms ω_M on the symplectic sum M of two smooth symplectic four-manifolds M_i (i=1,2) diffeomorphic to \mathbb{R}^4 with symplectic forms admitting non-exact Lagrangian tori $(T_1')^i$ (i=1,2) admit a non-exact Lagrangian surface T_2' of genus 2 and $[\omega_M] \neq 0$ in $H^2(M,T_2';\mathbb{R})$.

On the other hand, the symplectic forms ω_M' on the symplectic sum M of two smooth symplectic four-manifolds M_i (i=1,2) diffeomorphic to \mathbb{R}^4 with symplectic forms admitting exact Lagrangian tori T_1^i (i=1,2) admit an exact Lagrangian surface T_2 of genus 2 and $[\omega_M'] = 0$ in $H^2(M,T_2;\mathbb{R})$. Therefore, (M, ω_M') does not symplectically diffeomorphic to (M, ω_M) .

In addition, we can show the exoticities of ω_M and ω_M' for any closed 2-form (not necessarily exact) η on the sphere bundle $S \cong D^2 \times S^2$ over D^2 with $i_0^*\eta = 0$ and η restricting to a symplectic form on each fiber, since $T_2' \cap ((M_2 - \overset{\circ}{S}_i) - j_2(D^2)) \subset M_2 - g(S - D_0)$.

References

- Larry Bates and George Peschke, A Remarkable Symplectic Structure, J. Diff. Geom. 32 (1990), 533-538.
- [2] Robert E. Gompf, A New Construction of Symplectic Manifolds, Annals of Math. 142 (1995), 527-595.

Yong Seoung Cho and Jin Yue Yoon

- [3] M. Gromov, Pseudo Holomorphic Curves in Symplectic Manifolds, Invent. Math. 82 (1985), 307-347.
- [4] Dusa McDuff, Examples of Symplectic Structures, Invent. Math. 89 (1987), 13-36.
- [5] Dusa McDuff and Dietman Salamon, Introduction to Symplectic Topology, Clarendon Press · Oxford, 1995.
- [6] John Milnor and James D. Stasheff, Characteristic Classes, Princeton University Press, 1974.
- [7] Walter A. Poor, Differential Geometric Structures, McGraw-Hill, Inc., 1981.
- [8] W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468.

DEPARTMENT OF MATHEMATICS, EWHA WOMANS UNIVERSITY, SEOUL 120-750, KOREA