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EXOTIC SYMPLECTIC STRUCTURES ON S3 xR

YONG SEOUNG CHO AND JIN YUE YOON

ABSTRACT. We construct exotic symplectic structures on S3 x R
which is obtained by the symplectic sum of two simooth symplectic
four-manifolds with exotic symplectic structures, each of which is
diffeomorphic to R%.

1. Introduction

Let wy be the standard symplectic structure on R?™ and L c R?"
be a closed Lagrangian submanifold. In [3], Gromov have shown the
following theorem:

THEOREM (GROMOV). As a cohomology class [wg] Is non-zero in
H?(R?" L;R). The form wy has a potential ¥ on R*", ie., wg = di.
Furthermore, [|] # 0 in HY(L;R).

The Lagrangian submanifold L in a 2n-dimensional symplectic man-
ifold M is called exact(non-exact) if the restriction to the Lagrangian
L of the potential is exact(non-exact). Thus, in the above Theorem, L
is a non-exact Lagrangian in R?".

Gromov have also proved that there are no exact Lagrangian sub-
varieties in R?", for the standard symplectic structure. Recently, Bates
and Peschke [1] have explicitly endowed a manifold M diffeomorphic
to R* with a symplectic form w admitting a Lagrangian torus T such
that [w] = 0 in H%(M,T;R). Hence T is an exact Lagrangian. By
Gromov’s theorem, (M, w) does not symplectically embed in (R*, wp),
such a structure w is called an exotic symplectic structure on M.
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Let M; (i = 1,2) be smooth symplectic four-manifolds diffeomorphic
to R* with symplectic forms admitting Lagrangian tori (T})* (i = 1,2).

In section 2, we introduce the symplectic sum of these two manifolds
and construct symplectic forms wps on the sum M = M;f,M, from
symplectic forms on the M; (i = 1,2). We first show that

LEMMA 2.3. M = MyfyMs 2 (M — S1) — K) U, (M — Sy) —

72(D?)) = S3 x R, where gz are the interior surfaces of S; on (T})* with

the boundaries S} = j;(8D?) (i = 1,2). Hence HY(T, ; R) = H2(M,
TQ' ; R) is an isomorphism, where Té is a Lagrangian surface of genus
2in M.

In section 3, we show the process of constructing symplectic forms
why on M = My M2 = 83 x R from exotic symplectic forms on two
smooth symplectic four-manifolds M; (z = 1,2) diffeomorphic to R%.

In section 4, we get the following two Lemmas 4.1 and 4.2 from each
case of manifolds (M,wpr) and (M,w),):

LEMMA 4.1. The symplectic forms wys admit a non-exact Lagrangian
surface T, of genus 2 in M and hence [wy] # 0 in H2(M, Ty; R).

LEMMA 4.2. The symplectic forms w}, admit an exact Lagrangian
surface T of genus 2 in M and hence [w},] = 0 in H?(M,Ty;R).

By the Lemmas 4.1 and 4.2, we can get the following Theorem 4.3.

THEOREM 4.3. The symplectic forms wps on the symplectic sum M
of two smooth symplectic four-manifolds M; (i = 1,2) diffeomorphic
to R* with symplectic forms admitting non-exact Lagrangian tori (T} )¢
(¢t = 1,2) admit a non-exact Lagrangian surface T2/ of genus 2 and {wy]
# 0in HX(M, T,;R).

On the other hand, the symplectic forms w, on the symplectic
sum M of two smooth symplectic four-manifolds M; (i = 1,2) dif-
feomorphic to R* with symplectic forms admitting exact Lagrangian
tori T (i = 1,2) admit an exact Lagrangian surface Ty of genus 2 and
[wis] = 0in H*(M,Ty;R). Therefore, (M, },) does not symplecti-
cally diffeomorphic to (M, wyy).
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2. Symplectic sums

Let M; (¢ = 1,2) be smooth symplectic four- manifolds which are
diffeomorphic to R*. Let R* be thought of as R? x 2 and let (r,8), (s,9)
be polar coordinates on each factor. That is, if (z,z2) and (1, y2) are
rectangular coordinates on each factor of R? x F2, then r1 = rcosf,
T2 =rsinb, y; = scos¢, yo = ssin@. Suppose that R? has a standard
symplectic structure wgs = Z?:l dz; A dy;.

Let Tl = { (-7:1;1:271/173/2) € R4] .'L'% +CL'% = g‘-. y%"*‘.ﬂ% = '721 } = {
(/5 cos®, /5 siné, V5 cos ¢, VEsing) eRY0O<H<2m, 0< o <
2r }. Let j: Ty — R* be an embedding defined by j(rcos6, rsiné,
scos ¢, ssing) = (rcosf, scos¢, rsind, ssing). Then Tll =j(Ty) is a
torus defined by z% + ¢? = T and 2% + ¢ = 5, and a closed Lagrangian
in R* with respect to wga since WR4 ]T}/ = j*wr+ and

} o 0
J wRa (m)(%, %)

= re GO i gl i35 )
= (dz; ANdy; + dza A dy2)(j(m))

(—rsina - —a—Ij(m) —-Tcosa- —8—},,(,,1),
o, Oy
0 0

— 1 | -+ | m
ssin 3 8332’3("1) scos 3 ayglJ( )

= —rsina-0 — 0-rcosa + 0-scos@ + ssin3-0
=0

forallm = (rcosf,rsinf,scosd,ssing) € Tj.

By Gromov’s theorem in section 1, [wga] # 0 in H%(R*,T,;R) and
[Z?:l x,—dyi[Tlx] # 0in HY(T;R). If we take @; as diffeomorphism from
M; to R* such that ¢; }(T}) = (T})" and if we set WM, = PIwgs as sym-
plectic structures on M; (i = 1,2), then (T}) are closed Lagrangian
tori in M; since wMil(TI/)l = go;-*wwl(,r;)i = wR“!T{ = 0. Moreover,

T,)? are non-exact Lagrangian tori in M; since [pf 2: zidy) | v
1 grang illi=1 (1))
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= {2?21 xidyi|T1'] # 0 in H'((T})%R). By isomorphisms H((T})%;R)
=~ H2(M;, (T})% R), lwar,) # 0 in H2(M;, (T1)4 R).

Let D? be the standard closed 2-dimensional disk of radius /7
with symplectic structure wp: = dzy A dy;. Let h : (D?,6D?) —
(R*,T}) be defined by h(xl,y;})‘: (\1/—‘5, %, %, —'“"7—12—), and let j7; =
@i toh: (D?,0D?) — (M;,(T})?). Then j; are symplectic embeddings
satisfying 5:(9D?) C (Ty)" and (js(D®) —5:(8D%)) r (T7)' = 0 (i = 1,2)
since jfwn, = 77 @iwre = (p; 0 J;)*wgra = h*wgs and

h*wga = h*(dzy ANdyy + dzo A dys)

1 1 1
— o dm A ——dy - —
1 y1+\/§

V2
1
= Edl'l A dyl - ;édyl AN diL'l

1

V2

dyi A ( )ydx,

1

= da:1 A dyl

= Wwpe.

We can choose a fiber-orientation reversing bundle isomorphism 7 :
v1 — vy. We choose fiber metrics on v; such that ¢ is isometric. Let v/?
be disk bundles in v; (¢ = 1, 2). Then there is an orientation-preserving
diffeomorphism ¢ = toy : 9 —j1(D?) — v — jo(D?), where the
map ¢ : v] — {0 - section} — v§ — {0 — section} is defined by
z) = (W—Hi—cﬂ—f — )2z,

Now we construct suitable models for tubular neighborhoods of the
submanifolds 7;(D?) in M; (i = 1, 2). Let v; denote the SO(2)-
vector bundles over D? and let 12 denote the sub-disk bundles of ra-
dius 7712 (i = 1, 2). Let 7 : S — D? be the 2-sphere bundle
obtained by gluing together v and 19 using ¢ defined in the above
statement. We may take the sphere bundle S over D? as D? x S2.
Let iy, ioo : D? — 8 be 0-sections of 1/(1) and ug with images Dy and
D, respectively. Thus, ¥ = S — Dg.

Considering cylindrical polar coordinates (6, z3) on $?—{(0, 0, £1)}
where 0 < 8 < 27 and —1 < 3 < 1, we can take a symplectic form
wg2 on 52 as the area form wg: = d@ A dz3 induced by the Euclidean
metric. Hence we may choose a closed 2-form 7 on the sphere bundle
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S = D? x 82 over D? as ws2. Then n has the following properties:
Wwon = Nligp2y = Nlp, = 0 and n|s2 = df A dzs is the symplectic
form. By the method of Thurston[8], we can thus construct the set of
symplectic forms on S as {wy = 1*wp: +t-n 0 <t < t1} for some
sufficiently small constant ¢; > 0.

On the other hand, there is a smooth orientation-preserving embed-
ding f: v? — M; (into any preassigned neighborhood of j;(D?)) with
fotw = ji. And flp, : (Do, wy,) — (Mi, wyy) is symplectic,
since fgwy = IgT wp2 +t-i5n = (moig)wpe = wp2, foig = 7
and j; is symplectic. Thus we get the following Theorem 2.1 which is
the same result as Gompf’s.

THEOREM 2.1. Let (1, wy) , (M1, wa,), Do and f : ) — My be
the same as above. Then there is a compactly supported isotopy rel
Dy from f to an embedding f : 9 — M, that is symplectic in a

neighborhood of Dy.

Proof. It can be proved by the same way as the proof of Lemma 2.1
in [2]. O

Weinstein’s integral operator I : Q2(19) — Q1(19) is defined by
I(n) = fol 75 (Xsam)ds, where w5 : 1) — ) (0 <X s < 1) is a multi-
plication by s in this bundle structure, X, = diis-ﬂs the corresponding
vector field, and J denotes contraction. The key property of I is that
if n satisfles dn = 0 and ign = 0, then dI(n) = 7. Set @ = 1(n), and
define Y; by Yiw, = ~, 0 < t < t{. Then Y, (0 <t <tp)is a time-
dependent vector field on v that vanishes on Dy and S O(2)-invariant.
For any SO(2)-invariant compact subset K C 12 and fixed ¢, € (0,t4],
Y: integrates to an SO(2)-equivariant flow F: K x J — V9 where J is
some neighborhood of ¢y in (0,¢1] and F,, = idx. Since L (Fru,) =
dF(Yiow) + FY(dw,) = —~Frdp+ Fyp = — i+ Fin =0, Ffuw, is
independent of .

For x € 1), let D(z) be the closed disk in the fiber 7 (m(z)) that
is bounded by the SO(2)-orbit of z. Let A(zx) = fD(z)n be the 7-
area of D(z). Then A : ) — [0,1) is a smooth, S0(2)-invariant,
proper surjection that increases radially. The w;-area of D(z) is given
by _fl)(x)wt = fn(a:)(”*“’D"’ +t-n) = th(x)n =t-A(z). Fix x € ¥ and
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to € (0,t1], and integrate Y; as above to obtain a flow of D(z) with F;, =
idp(z)- Let z(t) = Fi(z) be the trajectory of z, with z(¢o) = z. Since F
is SO(2)-equivariant, 0F; D(z) = 8D(Fy(x)) = 8D(z(t)) . Thus the w;-
area of D(z(t)) is t - A(z(t)) = fD(x(t))wt = thD(I)wt = fD(I) Fro =
fD(z) Fjwi, = to - A(z), and hence A(z(t)) = % - A(z), which tells us
that all flow lines of Y; are decreasing in A. Since A : v) — [0,1) is
proper, flow lines cannot escape from 19 as ¢ increases, and the flow is
globally defined as a map F : v x [tg, ;] — 0.

For any = € 1), A(z) < 1, so A(F;, (x)) = A(z(t1)) < %‘ll Thus, we
may arrange for Fy, (1?) to lie in any preassigned neighborhood V of
Dy by choosing tg sufficiently small. Since Fy, : (1), wy,) — (V9,wy,) is
symplectic, we get the following result with the neighborhood V = 1/?
of Dy: For the neighborhood 19 of Dy in (19, wy,), there is a tp with 0 <
to < t1 such that, for all positive t < ¢, (), w;) embeds symplectically
in 9 rel Dy . From the above fact and Theorem 2.1, we can get a
symplectic embedding f : (19, W) — (My,wnpr,) with foig = ji, for
any fixed ¢ € (0,t9] with ty suitably small, and f is isotopic rel Dg to
f.

We would like to find a similar map from a neighborhood of D, in
(S, w¢) into a neighborhood of j2(D?) in Ms. By construction, 1§ =
S — Dy canonically identifies the normal bundles v, and v of Do, and
Dy (reversing fiber-orientation). We also have isomorphisms f. : 1o
— vy and ¥ : vy — vy (the latter reversing orientation). Let
¥ Ve — 1y denote the composite of these (which preserves orien-
tation). Then there is a smooth embedding g : S—Dy — M, (indepen-
dent of t) with goio, = jo and g« = 9" onve. Clearly, M = M,
M; could be constructed as a smooth manifold by composing f~!
and g. However, we cannot perturb g to be symplectic, since we
have iJ w; = wpz +t-125 7. To remedy this, we choose a smooth
map p : S — S that radially rescales v?, fixing a neighborhood
of Dy and collapsing a neighborhood of Dy onto Dy. By compos-
ing g~! and g, we may assume that g~! extend: to a smooth map
A: N — S with A(N — g(S —~ Dg)) C Dg, where N is a neigh-
borhood of g(S — Dp). Let { = A*n. Then ¢ is a closed 2-form that
vanishes on N — g(S — Dy), since i5n = 0. And ¢ can be extended
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over M> as follows:

X' over g(S — Dyg)
¢= 0 over My — ¢g(S — Dy).

¢ is determined by g and 7 (so it is independent of A and t) and
Ja¢ = 1i5,n. Let’s replace wa, by Wa, = wy, + t-¢. Since non-
degeneracy is an open condition, @y, will be symplectic on My pro-
vided that 0 < ¢t < tg for ¢y sufficiently small. Furthermore, g|p_ :
(Do, wy) — (Ma, @p,) is a symplectic embedding. Hence we
can get the same result as Theorem 2.1 for the smooth embedding
g, and by this result, there is a compactly supported isotopy rel D,
from g to §: (S — Do, w;) — (Ma, @pr,) which is symplectic on a
neighborhood U, of D.

Now we perform the symplectic summation. Let W = §(Us — Do)

be a neighborhood of one end of the open manifold (M, — g’g) — 32(D?),

where S; are the interior surfaces of S; on (7})* with the boundaries
S} = ji(6D?) (i = 1,2). The map ™' : (W, Op,) — (19, wy)

symplectically identifies the ends of ((Ms — gz) ~ j2(D?),@1s,) and
(1, wy). Let K = f(1? —Uy) and let ¢ be the inverse of the symplectic
embedding f o 7! (W, &um,) — (M1, war,). We use ¢ to glue

together the two ends of ((M; — S;) — K, wyy,) and (Mo — g‘g) -
j2(D?), Opp,). The resulting symplectic manifold is diffeomorphic to
M. Asin [2], we can get a unique isotopy class of symplectic forms on
M as follows:

WM, on My — v
wy = | {(1 = 8)wp, +5 7 wp2 |0< s <1} oncd(1?)
{om, = wm, +t-C|0<t <t} on My — ja(D?).

THEOREM 2.2. In the above notation, we have the following results:

(1) The symplectic sum (M, wps) is a smooth symplectic four-
manifold with symplectic structures wyy,
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(2) T, = (T,)*4(T})? is a non-exact Lagrangian surface of genus 2
in M with respect to wyy,

(3) lwa] # 0 in H2(M, T;R).

((2) and (3) will be shown in Lemma 4.1.)

LEMMA 2.3. M = MytyM, = (My — S1) — K) Uy, (Ma — Sa) —

j2(D?)) = 8% x R, where S; are the interior surfaces of S; on (T})! with
the boundaries S} = j;(0D?) (i = 1,2). Hence H'(T, ; R) = H?(M,
TQ, ; R) is an isomorphism, where Té is a Lagrangian surface of genus
2in M.

Proof. We know that M = (M, —S1) — K) Uy ((Mz— 82) — j2(D?))
> §% % (—00,0) U, S x (0,00) = 53 x (—00,0] U, S3 x [0,00). Since

w=(fog 1)"!=go f! glues together the two ends of ((M; — .%1) -
K,wM]) and ((Mg — SQ) —jg(Dz),@NI,}), M = SS x IR. 0

3. The construction of an exotic symplectic form

In this section we would like to construct symplectic forms on S x
R from exotic symplectic forms on two smooth symplectic manifolds
M; (i = 1,2) diffeomorphic to R*. In section 4 we will prove that the
symplectic forms are exotic.

Let 3 € QY(R3) be such that the pull-back of ¥ to the torus vanishes
and dy # 0, and let x € Q'(R®) be such that x A dy is a volume on R®.
Let p = v+xt-x € QY(R?). We define 7 to be the smooth one-form
on R* given by

7 = r?cosridf + s%coss?dg,

where R? may be thought of as R? x R? and (r.6), (s,¢) are polar
coordinates on each factor.

For details, we take @ = (p~1)*i*7, x = (p71)*4"¢, and £ = *(dT A
d¢?), where 52 is a three sphere defined by rP+s?=¢%1: S — R*
the standard embedding, and p : S® — {z} — R the stereographic
projection, where z is a point in §3—~7}. Then there is an open ball B in
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R3 containing p(77) and an interval I about z* = 0 so that w),, (= dp) is
a symplectic form on a smooth symplectic four-manifold M'(=~ B x [)
diffeomorphic to R*. We see that 7 vanishes only on the torus T}
defined by 22423 = r? = 7/2 and y?+y2 = 5% == 7/2. T} is an exact
Lagrangian torus in M’, since p |7, =0 and wy, |7, = dp |, = O
By an isomorphism H(T} ; R) = H?(B x I, Ty ; R), the relative
class [wh, ] vanishes in H?(B x I, T1;R). We call this structure w}),,
an exotic symplectic structure on M’. By the same procedure as in the
section 2 with h : (D?,8D?%) — (R* T}) defined by h(z1,y1) = (%,
%, %/-‘_, —%), we can get a unique isotopy class of symplectic forms on
M = Mify M2, where w), = dp; are exotic symplectic forms on M; as
follows:

wyr, = dp1 on M; — 9
Wiy = | {1 = s)why, +s Twp |0 < s < 1} ond(W))

{Dhy, = Wiy, + t-C10 < t < to} on My — ja(D?).

THEOREM 3.1. In the above notations, we have the following re-
sults:

(1) The symplectic sum (M, w),) is a smooth symplectic four-
manifold with symplectic structures w,,

(2) Ty = T}4T? is an exact Lagrangian surface of genus 2 in M with
respect to why,

(3) [why] = 0 in H3(M,Ty;R).

((2) and (3) will be shown in Lemma 4.2.)

We also have the following Lemma 3.2 which is similar to Lemma
2.3.

LEMMA 3.2. HY(Ty;R) = H?(M,T»;R) is an isomorphism, where
T, is a Lagrangian surface of genus 2 in M.

4. Exotic symplectic structures

Let (M,wps) be the smooth symplectic four-manifold in Theorem
2.2. (1).
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LEMMA 4.1. The symplectic forms wys admit a non-exact Lagrang1an
surface T, of genus 2 in M and hence [wm] # 0in H*(M, T,;R).

Proof. Let S} = j;(0D?) N (T,)* (i = 1,2). Let’s divide the surface
T, into 3 parts [Ty N (M1 —19)] U [Ty N cl(v®)] U [Ty N (M — j2(D?))].
In the first part, was, |77 (pr, 0y = 0, since Ty N (My —19) C (T})! and
lel(T yr = 0. In the second part, way, |/ sAaey = 0, since T, N cl(19)
=S} ¢ (T))'. And 7 wpleanl(V?) = wpz|s1 = 0. Thus (1 —s)wpy, +
s T*wp2 ITQOCI(V?) =0(0 < s <1). Inthe third part, wpy, |T2'O(M2—j2(D2))
= 0, since T) N (M, — j2(D?)) ¢ (T})? and WA, E(Tll)g =0. Also ( is
zero on T N (My — jo(D?)), since ( is zero on My — g(S — Dy) and T,

(M2 —jg(Dz)) C M;— (S Do) Thus (IJM2 |T A(Ma—jo(D?)) = = 0 and
hence, T2 is a Lagrangian surface of genus 2 in (M = M1ﬂ¢M2, W)

Let’s examine the exactness of the Lagranglan surface T2 in M.

er T 1x1dyz)|(:r ji = Yi @idyilyy = 57(C2_) 24dys) can be locally
written by ZF(sin@cos¢ - cos@sin ¢)d¢ Let So be a meridian in the
torus Tl' with 8 = 0. Then we have

T 27
I (3 ) = -5 | simeds
=1

4[cos d)]og

© ol

”

2
Since f e (5(S0)) Cpl(zl 1 xzdyz),T N(M,—v0) = ng J (Zi:l z;dy;) # 0,
@1(212:1 :L'zdyl)|sz(M1“V?) is not exact. Thus T, is a non-exact La-

grangian in M. By the isomorphism in Lemma 2.3, [wy] # 0 in
H*(M,T,;R). O

Let (M,w),) be the smooth symplectic four-manifold in Theorem
3.1.(1).

LEMMA 4.2. The symplectic forms w}, admit an exact Lagrangian
surface T, of genus 2 in M and hence [w),] = 0 in H?(M,Ty;R).
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Proof. By the same method shown in the first part of the proof of
Lemma 4.1, we can easily see that w),|r, = 0 and hence T is also a
Lagrangian surface of genus 2 in (M = M, M, wj,).

Let’s examine the exactness of the Lagrangian surface T, in M.
pilTyn(a, -9y = 0, since ToN (M) -v?) ¢ T and p1lry = 0. Moreover
T (@18Y1)|1,ne1(00) = T1dy1ls: is an exact form. Therefore (1 —s)p; +
s - T (Z18Y1) I rymer(n0) is exact. We know that Onr, |7,n(Mp—ja(D?)) =
dp2|Tyn(My—~ja(D2)), since ¢ is zero on Ty N (Mg — ja(D?)) € My —g(S —
Dy) and that p2|T2rT(M2~j2(D2)) = 0, since To N (My — ]2(D2)) C T12
and leTf = 0. Thus T is an exact Lagrangian in M and we conclude
Lemma 4.2 by the use of Lemma 3.2. O

By the Lemmas 4.1, 4.2, we can get the following Theorem 4.3.

THEOREM 4.3. The symplectic forms wys on the symplectic sum M
of two smooth symplectic four-manifolds M; (i = 1,2) diffeomorphic
to R* with symplectic forms admitting non-exact Lagrangian tori (T{ )
(i = 1,2) admit a non-exact Lagrangian surface Ty of genus 2 and [w ]
£ 0in H*(M,Ty; R).

On the other hand, the symplectic forms w', on the symplectic
sum M of two smooth symplectic four-manifolds M; (i = 1,2) dif-
feomorphic to R* with symplectic forms admitting exact Lagrangian
tori T} (i = 1,2) admit an exact Lagrangian surface Ty of genus 2 and
wh] = 0in H?*(M,Ty;R). Therefore, (M, wh,) does not symplecti-
cally diffeomorphic to (M, wpy).

In addition, we can show the exoticities of wys and w}, for any closed
2-form (not necessarily exact) 7 on the sphere bundle S = D? x §2 over
D? with i3n = 0 and 7 restricting to a symplectic form on each fiber,

since TQ/ M ((Mg — g‘{,) — jQ(DQ)) c My — g(S — ])0).
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