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NOTE ON CONTACT STRUCTURE
AND SYMPLECTIC STRUCTURE

M1 Sung CHO AND YONG SEUNG CHO

ABSTRACT. Let (X, J) be a closed, connected almost complex four-
manifold. Let X; be the complement of an open disc in X and let §;
be the contact structure on the boundary X3 which is compatible
with a symplectic structure on X;. Then we show that (X, J) is sym-
plectic if and only if the contact structure £; on 8X; is isomorphic
to the standard contact structure on the 3-sphere S3 and 8X; is J-
concave. Also we show that there is a contact structure £o on S2 x S?
which is not strongly symplectically fillable but symplectically fill-
able, and that (S2 x S,0) has infinitely many non-diffeornorphic
minimal fillings whose restrictions on S? x S! are o where ¢ is the
restriction of the standard symplectic structure on S2 x D?2.

1. Introduction

Contact geometry has recently come to the foreground of low di-
mensional topology. Not only have there been striking advances in the
understanding of contact structures on 3-manifolds, but there has been
significant interplay with symplectic geometry and Seiberg-Witten the-
ory. In 1971 Martinet [12] showed how to construct a contact structure
on any 3-manifold. Later it became clear that contact structures fell
into two distinct classes: tight and overtwisted.

It is the tight contact structures that carry significant geometric in-
formation. It was known that for any 3-manifold there are only finitely
many elements in its second cohomology that can be realized by tight
contact structures [7]. More recently Kronheimer and Mrowka [10] have
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shown that only finitely many homotopy types of plane fields can be
realized by semi-fillable (and hence tight) contact structures.

We apply them to the simplest class of 3-manifolds. Recall lens
spaces L(p,q) are 3-manifolds that can be written as the union of two
solid tori, or in other words, lens spaces are Heegaard genus one mani-
folds. Recently Etnyre have shown that there is a unique tight contact
structure on L(0,q) = S x §%, L(1,q) = S3, and L(2,q) = RP3.

The purpose of this paper is to introduce a relationship between the
symplectic structure on a 4-manifold with boundary and the contact
structure on its boundary. Let (X,J) be a closed, connected almost
complex 4-manifold. Let X; be the complement of an open disc in
X and let & be the contact structure on the boundary 9X; which
is compatible with symplectic structure on X;. Then we show that
(X, J) is symplectic if and only if the contact structure & on 89X, is
isomorphic to the standard contact structure on L(1,q) = $% and X,
is J-concave. Also in section 3, we show that there is an example that
which is not strongly symplectically fillable but symplectically fillable
contact structure on L(0,q) = S! x S? and we show that L(0,q) =
S x S? has infinitely many non-diffeomorphic minimal fillings.

2. Symplectic Structures on Almost Complex 4-Manifolds

2.1 Symplectic structures on open manifolds

Let X be a closed, connected, smooth 4-manifold with almost com-
plex structure J. Let g be a Riemannian metric on X on which J is an
isometry. In this case we say that g is compatible with J. The almost
complex structure J and the metric g define a nondegenerate 2-form w’
by w'(v1,v2) = g(Jvy,v2) for any vy, v2 € TX.

In this case the nondegenerate 2-form w’ is called compatible with J.
In fact there is a one-to-one correspondence of nondegenerate 2-forms
compatible with J and Riemannian metrics compatible with J.

If X is not symplectic, then &’ is not closed. Let N be a small
neighborhood of a point p in X which is diffeomorphic to the standard
open 4-disc D*. Then X; = X — N is an almost complex manifold
with boundary 8X; and has a nondegenerate 2-form wp’ which is the
restriction of w'.
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A manifold is called open if each component is either non compact
or has a non-empty boundary.

THEOREM 2.1 (GROMOV). Let X be an open 4-manifold. Let w €
Q?(X) be a nondegenerate 2-form and let a € H?>(X;R). Then there is
a smooth family of nondegerate 2-forms w; on X such that wg = w and
w1 Is a symplectic form which represents the class a.

If a € H>1(Xy;R) is a self-dual cohomology class then by the Gro-
mov’s Theorem there is a smooth family of nondegenerate forms w; on
Xy such that wp = wp’ and w, is a self-dual symplectic form which
represents the class a.

2.2 J-convexity

Let (X, J) be an almost complex manifold of the real dimension 4
and ¥ be an oriented hypersurface in X of the real codimension 1.
Each tangent plane T, (¥), z € ¥, contains a unique complex line &, C
T.(X) which we will call a complex tangency to ¥ at z. The complex
tangency is canonically oriented and, therefore, cooriented. Hence the
tangent plane distribution £ on ¥ can be defined by an equation o = 0
where the 1-form « is unique up to multiplication by the same positive
factor. We say that ¥ is J-convex (or J-concave) if da(v, Jv) > 0 (or
da(v, Jv) < 0) for any non-zero vector v € &;, x € ¥. We use the word
pseudo-convex or pseudo-concave when the almost complex structure
J is not specified.

Following Gromov (see [9]) we say that an almost complex manifold
is tame if there exists a symplectic structure w on X such that the form
w(v, Jv), v € T(X), is positive definite.

The following theorem indicates that the topology of the J-convex
boundary imposes very strong restrictions on the topology of the do-
main.

THEOREM 2.2 [7]. Let (X,J) be a tame symplectic manifold and
2 C X be a domain bounded by a J-convex 3-sphere. Then for an al-
most complex structure J' which is C*®-close to J the manifold (Q, J")
is a 4-ball up to blowing up a few points. In particular, §) is diffeomor-

phic to D%k@.
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2.3 Condition for symplectic manifold

Let (X, J) be a closed, connected almost complex 4-manifold and g
be a Riemannian metric on X on which J is an isometry. Then there
is the nondegenerate 2-form w’ on X which is compatible with J. Let
N be a small neighborhood of a point p in X which is diffeomorphic to
the standard open 4-disc D* and X; = X — N. Then X; is an almost
complex manifold with boundary 8X; ~ S and has a nondegenerate 2-
form wp which is the restriction of w’. Then by the Gromov’s Theorem,
there is a smooth family of nondegenerate forms w; on X; such that
wy is symplectic on X;. Let { = T(0X1) N J1;T(8X1), where J; is a
compatible almost complex structure with w;. Then £; is a compatible
contact structure on 8X; with wy. Let w = Ele dxz; A dy; be the stan-
dard symplectic structure on R%. Then the standard contact structure
&t on the 3-sphere S3 is given by the 1-form %Zle(xidyi — yidx;).
Now we are ready to prove the following theorem.

THEOREM 2.3. In the above notations, a closed, connected almost
complex 4-manifold (X, J) is symplectic if and only if the contact struc-
ture §; on 0X; is isomorphic to the standard contact structure £s; on
S3 and 8X; is J-concave.

Proof. Suppose that X is a closed, connected symplectic 4-manifold.
Darboux’s theorem says that any symplectic form w on X is locally
diffeomorphic to the standard symplectic form wg = Z?:l dz; A dy; on
R*. For any point p € X there is a coordinate chart ¢ : D*(14+¢€) — X
such that ¢(0) = p and wy = ¢*w where D*(1 + ¢) is a disc in R* with
center 0 and radius 1 + € for some small € > 0. Then the restriction
¢ : 83 — ¢(S%) is a diffeomorphism. The contact structure ¢; on
#(S3) = (X1 = X — ¢(D*(1))) compatible with the symplectic form
w is isomorphic to the standard contact structure &,; on S® since there
is a unique fillable contact structure (up to isotopy) on S3.

Since ¢; is a contact structure on 8X; ~ S2, there is a contact 1-form
a; such that daile, # 0. If doyleg, > 0, then X, is J-convex. Since
X; is minimal, by Theorem 2.2, X; ~ D* and

X=X1L5JD4:D4%JD4:S4.
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Since S* cannot have any almost complex structure, this contradicts
the assumption. Therefore da;|¢, < 0. Hence 80X, is J-concave.

Conversely, suppose that (X;,w;) is a symplectic 4-manifold with
boundary 6X; on which the compatible contact structure &; with w; is
isomorphic to the standard contact structure £, on S°.

Let U; be a small collared neighborhood of 9X; in X;. Let ¢ : U; —
D* be diffeomorphic onto its image ¢(U;) such that ¢(0X;) = S° and
¢*(Est) = &1. Let 05 be the 1-form on S® whose kernel is £5; and let 6
be the 1-form on 8X; whose kernel is &;. Then ¢*0, = 0, where f
is a negative function on 9X;.

Extend 6} and 6, on their collared neighborhoods respectively. Then
¢*w0 = ¢*d93t == d¢*(03t) = d(fgll) Since dwl = 0, (dwl)lul =
d(wi|y,) = 0. Since 80X is a strong deformation retract of Uy and X,
is diffeomorphic to S3, wy is exact on U;.

There is a 1-form 6y on U; such that dfy = w; and ¢*wp — wy =
d(f67) — dbo = d(f0] — 6o). Let 6; = f6. Since the cotangent bundle
on U is trivial there is a smooth 1-parameter family of 1-form 6, joining
0y and #;. Thus we may extend smooth 1-parameter family df; = w;
joining w1 to ¢*wa. So by attaching D* to X; via ¢ we have a symplectic
4-manifold X = X; Uy D% a

COROLLARY 2.4. Let X be a closed, connected smooth 4-manifold
with almost complex structure. According to the notations of the above
Theorem if X is not symplectic, then the boundary (0X1,¢1) and the
3-sphere (S3,£,;) are diffeomorphic but not contactomorphic.

3. Fillable Contact Structure

In this chapter, we introduce some definitions on the boundary of a 4-
manifold. Using this, we have some results about symplectic manifolds
with contact-type boundaries. A contact structure on a 3-dimensional
manifold M is a 2-plane field £ in TM which is nowhere integrable. It
determines an orientation which must agree with the given one on M3.

(M3, ¢) is called to be symplectically fillable if M bounds a compact,
symplectic 4-manifold (X*,w) such that w|¢ # 0. And (M3, ¢) is called
to be strongly symplectically fillable if M bounds a compact, symplectic
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4-manifold (X%, w) such that w|¢ # 0 and there exists a vector field V
near M, which is outward pointing and transverse to M at M and
has the property that its flow expands w, i.e., Lyw = w. If (M3,¢) is
strongly symplectically fillable, then (M3, £) is a contact-type boundary
of a symplectic 4-manifold (X, w).

It is known that if (M3,¢) is strongly symplectically fillable, then it
is symplectically fillable. But the converse is not known yet. Hence we
will construct a contact structure which is symplectically fillable but
not strongly symplectically fillable.

Consider the symplectic manifold (S?,wp). The standard symplectic
form wo on §? = CP! = C U {0} is given by

_ dx A dy
DT AT P

in the usual coordinates x + iy on C. Let M = S§2 x S! and let a =
ydz + d8 be a 1-form on M = S? x S, where €% is the coordinate on
S1. Let & = Kera. Then & is a contact structure on M and « is a
contact form on M = §? x St

Consider the symplectic 4-manifold (S? x D?,w) where w = wy @
w*, wp is the standard symplectic form on S$? and w* is the standard
symplectic form on D2. Then 9(52 x D?) ~ 52 x S! and w|¢, # 0.
Therefore (52 x S1,&) is symplectically fillable.

LEMMA 3.1. (S? x §,&) is symplectically fillable and there is no
w-tame almost complex structure J on S§% x D? such that S? x S! is
J-convex.

Proof. Suppose not. That is, there is an w-tame almost complex
structure J on (S? x D?,w) such that S? x S! is J-convex. Hence
(S? x D2, w) has an w-tame almost complex structure J with the J-
convex boundary. By the following Theorem 3.2, S? x {p} in §2 x
St ~ 9(S£? x D?) bounds an embedded ball B2 in §% x D2. This is
impossible. O

THEOREM 3.2 [7]. Let (X,w) be a symplectic 4-manifold and J be
an w-tame almost complex structure and 0X is a J-convex boundary.
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Any closed surface ¥ C X different from S? satisfies the inequality
x(%) < =ler(X)(Z)].

If M is diffeomorphic to S?, then it can be filled by holomorphic disc.
In particular, it bounds an embedded ball B3 C X.

Let Fill*(&) be the set of all symplectic fillings of (S? x S, &) and
Fill**(&) the set of all strongly symplectic fillings of (S? x S, &).
Hence if (X,w) € Fill*(§y),then (X,w) is a compact symplectic 4-
manifold with 0X =~ S$% x S! and w|g, # 0. Similarly if (X,w) €
Fill**(&), then (X, w) is a compact symplectic 4-manifold with a contact
type boundary (S2 x S1,&). Also Fill* (&) D Fill**(&).

REMARK. (52 x D?,w) ¢ Fill**(&). If not, wla(szx p2y = do. Since
(8% x D?,w) € Fill*(&), wl¢, # 0. Hence we can choose an almost
complex structure J on S2 x D? has a J-convex boundary (52 x S, &).
This contradicts the above Lemma 3.1.

By Lemma 3.1, (S2 x D?,w) € Fill*(&). If (X,w) € Fill*(¢), then
(X,w) is a compact symplectic 4-manifold with X ~ $2 x S and
wle, # 0. Then we can choose an almost complex structure J € 7, (S? x
D?,w) such that & is J-invariant. Hence wl¢, > 0. Since « is a contact
form on £, dale, # 0. If dolg, < 0, then (X,w) ¢ Fill**(&). If
not, that is, (X,w) € Fill**(&), wlsx = da. Since w|e, > 0 and
dale, < 0, this is impossible. If dal¢, > 0, then (X,w) has a J-convex
boundary ($2 x S, &). Let F, = S% x {p} be a sphere in a J-convex
boundary (52 x S, &), for all p € S'. Then by Theorem 3.2, F,
bounds an embedded ball B3 in X. Hence B3 x S! is embedded in
(X,w). Let Y = Xa%( (B3 x S'). Then Y is a closed 4-manifold and Y’

contains a closed 4-manifold S% x S!. Hence this is impossible unless
X =~ B3 x S'. Therefore the only candidate which is an element of
Fill*$(&) is B® x S*. Note that if (X,w) € Fill**(£), then the first
Chern class ¢; (X)) restricted to X ~ 52 x S coincides with the Euler
class e(&o) of the bundle &. Since (52 x D?,w) € Fill*(&),

e(é0) = c1(T(S® x D?))|s2xs1 #0 € H*(S? x §).
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If there is a symplectic form w’ on B® x $? such that (B3 x S!,u') €
Fill* (&), then e(&) = c1(T(B3 x Sl))fa(Bsxgl). But this is impossi-
ble because that ¢;(T(B3 x S')) = 0 in H%(B? x S') = {0}. Hence
Fill>*(&p) = 0. Therefore we have the following proposition.

PROPOSITION 3.3. There is a contact structure &y on S% x S which
is not strongly symplectically fillable but symplectically fillable.

Consider an oriented 3-dimensional manifold M with closed 2-form
o. We will say that (M3,0) has contact type if there is a positively
oriented contact form o on M such that da = o. Following Eliashberg
[7], we say that the symplectic manifold (Z,w) fills (M, o) if there is
a diffeomorphism f : 0X — M such that f*o = w|sz. Further, the
filling (Z,w) is said to be minimal if Z contains no exceptional spheres
in its interior. In [13], McDuff show that the lens space Ly, p>1,all
have minimal symplectic fillings and if p # 4, minimal fillings (Z,w) of
(Lyp, o) are unique up to diffeomorphism, and up to symplectomorphism
if one fixes the cohomology class [w]. However (L4, o) has exactly two
nondiffeomorphic minimal fillings.

Fix the symplectic form w = wp ® w* on S? x D?. Here wy is the
standard symplectic form on S? and w* is the standard symplectic form
on D?. Let 0 = w|g2x 1. Then o is a closed 2-form on $% x §1. Let w,
be the standard symplectic form on %y. Then (S? x £,,0 = wp & wy)
is a symplectic 4-manifold. Choose a point p in ¥,. Then there is a
neighborhood N (p) in £, such that wg| Np) = w*. Therefore

‘Dlssz(p) = wg ® w*.
Let Zg, = (5% x £,)\(S? x N(p)) and @y = @|z,. Then (Z4,&,) are
symplectic 4-manifolds with 8Z, ~ §2 x $* and
Wglsexsr = wo ® w*|g2xs1 = 0.

Hence (Z,, @,) are minimal symplectic fillings of (S? x S, o). Therefore
we have the following proposition.

PROPOSITION 3.4. (S%xS%,0) has infinitely many non-diffeomorphic
minimal fillings whose restrictions on the boundary are ¢.

REMARK. The above (Zg,@,) € Fill*(&), but (Z,,@,) ¢ Fill**(&).
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