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LENS SPACES ADMITTING MINIMAL SYMPLECTIC

FILLINGS WITH THE SECOND BETTI NUMBER ONE

Heesang Park and Dongsoo Shin

Abstract. We classify lens spaces with the Milnor fillable contact struc-

ture that admit minimal symplectic fillings whose second Betti numbers
are one.

1. Introduction

A lens space L(n, a) has its standard contact structure ξst called the Milnor
fillable contact structure. A symplectic filling of L(n, a) is a symplectic 4-
manifold (W,ω) with the boundary ∂W = L(n, a) satisfying the compatibility
condition ω = dξst.

Lisca [5] classifies minimal symplectic fillings of L(n, a) equipped with the
standard contact structure up to deformations and symplectomorphisms. As
a result, lens spaces L(n, a) admitting symplectic fillings W with b2(W ) =
0 are completely classified. A lens space L(n, a) has a symplectic filling W
with b2(W ) = 0 if and only if n = p2 and a = pq − 1 for some positive
integers p, q satisfying q < p and (p, q) = 1. Furthermore for such L(n, a)
there is only one symplectic filling W with b2(W ) = 0 (up to deformations and
symplectomorphisms).

In this paper we investigate the next case, that is, lens spaces admitting
minimal symplectic fillings with the second Betti number one. We classify lens
spaces L(n, a) that admit minimal symplectic fillings W with b2(W ) = 1:

Theorem (Theorem 5.5). A lens space L(n, a) admits a minimal symplectic
filling with b2 = 1 if and only if either (1) (n, a) = (2, 1); or (2) (n, a) =
(2m2, 2ma− 1) for some integers m, a with 0 < a < m and (m, a) = 1; or (3)
the Hirzebruch-Jung continued fraction of n/a is one of the Hirzebruch-Jung
fractions in Proposition 5.1.
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We then show that a lens space cannot have too many minimal symplectic
fillings with b2 = 1.

Theorem (Theorem 5.6). A lens space L(n, a) may have at most two different
minimal symplectic fillings with b2 = 1 up to deformations and symplectomor-
phisms.

For these results, we apply the relation between minimal symplectic fillings
of the lens space L(n, a) (classified by Lisca [5]) and Milnor fibers of the cyclic
quotient surface singularities 1

n (1, a) (described by special partial resolutions;
cf. [8]).

2. Symplectic fillings of lens spaces

Lisca [5] classifies minimal symplectic fillings of lens spaces up to defor-
mations and symplectomorphisms. Lisca [5] proves that there is a one-to-one
correspondence between the set of minimal symplectic fillings of L(n, a) and
the set K(n/n− a) of sequence of integers k = (k1, . . . , ke) defined as follows:
Let [a1, . . . , ae] be the Hirzebruch-Jung continued fraction of n/n− a, that is,

n

n− a
= a1 −

1

a2 −
1

· · · −
1

ae

=: [a1, . . . , ae],

where ai’s are integers with ai ≥ 2. Then the set K(n/n− a) is defined by

K(n/n−a)={k=(k1, . . . , ke) ∈ adm(Ne) | [k1, . . . , ke]=0 and 0 < ki ≤ ai, ∀i},

where we denote by adm(Ne) the set of all sequences (k1, . . . , ke) ∈ Ne such
that the matrix M(k1, . . . , ke) defined by Mi,i = ki, Mi,j = −1 if |i− j| = 1,
and Mi,j = 0 otherwise is positive semi-definite of rank at least e− 1.

Example 2.1. Let n = 19 and a = 7. Then 19/(19− 7) = [2, 3, 2, 3]. So

K(n/n− a) = {(1, 2, 2, 1), (1, 3, 1, 2), (2, 2, 1, 3)}.

Hence there are three minimal symplectic fillings of L(19, 7) up to deformations
and symplectomorphisms.

Indeed Lisca [5] constructs a smooth 4-manifold Wn,a(k) with L(n, a) as its
boundary for each k ∈ K(n/n− a) as follows: Let N(k) be the closed oriented
3-manifold given by surgery on S3 along the framed link in Figure 1. Note that
N(k) is orientation-preserving diffeomorphic to S1 × S2. Then Wn,a(k) is de-
fined by the smooth 4-manifold with boundary obtained by attaching 2-handles
to S1×D3 along the framed link as in Figure 2. By Lisca [5, Theorem 1.1], each
minimal symplectic filling of L(n, a) is orientation preserving diffeomorphic to
Wn,a(k) for some k ∈ K(n/n − a). Notice that the attaching circle of each
2-handle of Wn,a(k) is homologically non-trivial in S1 × S2. Therefore:
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k1 k2 ke−1 ke

Figure 1. The manifold N(k) (Lisca [5, Figure 1])

k1 k2 ke−1 ke

a1 − k1 a2 − k2 ae−1 − ke−1 ae − ke

Figure 2. A symplectic filling Wn,a(k) (Lisca [5, Figure 2])

Lemma 2.2. The second Betti number b2(Wn,a(k)) is given by

b2(Wn,a(k)) = −1 +

e∑
i=1

(ai − ki).

As an easy consequence:

Corollary 2.3. The second Betti number b2(Wn,a(k)) = 1 if and only if either
(1) there are two different indices α, β such that aα − kα = aβ − kβ = 1 and
ai − ki = 0 for all i 6= α, β or (2) there is one index γ such that aγ − kγ = 2
and ai − ki = 0 for all i 6= γ.

Example 2.4 (Continued from Example 2.1). The second Betti numbers of
the minimal symplectic fillings of L(19, 7) are as follows:

b2(W19,7(1, 2, 2, 1)) = 3, b2(W19,7(1, 3, 1, 2)) = 2, b2(W19,7(2, 2, 1, 3)) = 1.

3. Milnor fibers of cyclic quotient surface singularities

A Milnor fiber of a germ of a cyclic quotient surface singularity (X, 0) =
1
n (1, a) is roughly speaking a general fiber of its smooth deformation. Explicitly,
a smoothing of (X, 0) is a proper flat map π : X → ∆, where ∆ = {t ∈ C :
|t| < ε}, such that (π−1(0), 0) ∼= (X, 0) and π−1(t) is smooth for every t 6= 0.
Then the Milnor fiber M of a smoothing π of (X, 0) is a general fiber π−1(t)
(0 < t� ε).

The link of (X, 0) is the lens space L(n, a). So any Milnor fiber of (X, 0)
is naturally a Stein (hence minimal symplectic) filling of L(n, a). Conversely,
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Nemethi and Popescu-Pampu [6] (refer also [8]) prove that each minimal sym-
plectic filling of L(n, a) is diffeomorphic to a Milnor fiber of (X, 0); hence, there
is a one-to-one correspondence between the set of minimal symplectic fillings
of L(n, a) and the set of Milnor fibers of (X, 0).

3.1. P -resolutions and M-resolutions

Kollar and Shepherd-Barron [4] show that every smoothing of (X, 0) can be
realized as a Q-Gorenstein smoothing of a P -resolution of (X, 0), which is a
special partial resolution of (X, 0).

Definition 3.1. A singularity of class T is a cyclic quotient surface singularity
1
dp2 (1, dpq−1) for some positive integers d, p, q with d ≥ 1, 0 < q < p, (p, q) = 1.

Definition 3.2. A P -resolution of (X, 0) is a partial resolution f : Y → X
such that Y has only singularities of class T , and KY is ample relative to f .

Furthermore Behnke–Christophersen [1] establish another one-to-one corre-
spondence between minimal symplectic fillings and the so-called M -resolutions
of (X, 0).

Definition 3.3. A Wahl singularity is a cyclic quotient surface singularity
1
p2 (1, pq − 1) for some positive integers p, q satisfying 0 < q < p and (p, q) = 1.

We remark that a Wahl singularity admits a smoothing whose Milnor fiber
M is a rational homology disk, i.e., Hi(M,Q) = 0 for all i ≥ 1.

Definition 3.4 (Behnke-Christophersen [1, p. 882]). An M -resolution of a
quotient surface singularity (X, 0) is a partial resolution f : YM → X such that

(1) YM has only Wahl singularities.
(2) KYM

is nef relative to f , i.e., KYM
· E ≥ 0 for all f -exceptional curves

E.

Example 3.5 (Continued from Example 2.1). There are three P -resolutions
(which are also M -resolutions) of a cyclic quotient surface singularity 1

19 (1, 7):

−3 −4 −2 −3 −4 −2 −4 −1 −5 −2

Here a linear chain of vertices decorated by a rectangle � denotes curves on
the minimal resolution of a P -resolution which are contracted to a singularity
of class T on the P -resolution.

3.2. The rational blowdown surgery

The Q-Gorenstein smoothing of a Wahl singularity may be regarded topo-
logically as a rational blowdown surgery defined by Fintushel-Stern [2], and
extended by J. Park [7].
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We briefly review the rational blowdown surgery. Let (Y, 0) = 1
p2 (1, pq − 1)

be a Wahl singularity. Suppose that

p2

pq − 1
= [b1, . . . , br].

Let Cp,q be a regular neighborhood of the linear chain of smooth 2-spheres ui
in a smooth 4-manifold Z whose dual graph is given by:

−b1 −b2 −br−1 −br

Let Bp,q be the Milnor fiber of (Y, 0) associated to the Q-Gorenstein smoothing
of (Y, 0). Then Bp,q is a smooth 4-manifold with the lens space L(p2, pq − 1)
as its boundary such that H∗(Bp,q;Q) ∼= H∗(B

4;Q).
One may cut Cp,q from Z and paste Bp,q along the boundary L(p2, pq − 1)

so that one obtains a new smooth 4-manifold Zp,q = (Z−Cp,q)∪L(p2,pq−1)Bp,q,
which is called a rational blow-down surgery along Cp,q. The surgery can be
performed compatibly with a symplectic structure; Symington [9]. That is, if
Z is a symplectic 4-manifold and if each 2-spheres ui’s in Cp,q are symplectic
2-spheres intersecting positively with each other, then the rational blowdown
Zp,q is also a symplectic 4-manifold.

3.3. Milnor fibers via the rational blowdown surgery

Let (X, 0) be a cyclic quotient surface singularity and let M be its Milnor
fiber. Then M is a general fiber of the Q-Gorenstein smoothing of the cor-
responding M -resolution Y of X. Since the Q-Gorenstein smoothing of Y is
induced from the Q-Gorenstein smoothings of each Wahl singularities of Y ,
the Milnor fiber M is diffeomorphic to the symplectic 4-manifold obtained by
applying rational blowdown surgeries to each Wahl singularities of Y .

Lemma 3.6. Let (X, 0) be a cyclic quotient surface singularity and let M be
its Milnor fiber. Let Y be the M -resolution of X corresponding to M . Then
b2(M) is equal to the number of irreducible curves in Y .

Proof. The assertion follows easily from the fact that Bp,q is a rational ho-
mology ball with the boundary L(p2, pq − 1), which is a rational homology
sphere. �

Corollary 3.7. If W is a minimal symplectic filling of a cyclic quotient surface
singularity (X, 0) with b2(W ) = 1, then its corresponding P -resolution Y has
only one irreducible curve.

The following corollary is a well-known fact; cf. [1] for instance.

Corollary 3.8. Let (Z, 0) be a cyclic quotient surface singularity 1
dp2 (1, dpq−

1). Then it has a Milnor fiber M with b2(M) = d− 1.
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Proof. One may construct an M -resolution Y of (Z, 0) with d − 1 irreducible
curves Ci ∼= CP1 (i = 1, . . . , d−1) and d singular points Pi of type 1

p2 (1, pq−1)

as described in the following figure:

C1 C2
� � � � �

Cd−1

� � � � �

P1 P2 Pd

The proper transforms of Ci’s in the minimal resolution Ỹ of Y are (−1)-curves.

So the minimal resolution Ỹ is given by

∗—∗
−1
∗—∗

−1 −1
∗—∗

where ∗—∗ is the minimal resolution of the singularity 1
p2 (1, pq−1). One can

check that the above linear chain contracts to the singularity Z = 1
dp2 (1, dpq−

1). �

3.4. Extremal P -resolutions

According to Lemma 3.6, the P -resolution corresponding to a minimal sym-
plectic filling with b2 = 1 has a special property. So one can define:

Definition 3.9. An extremal P -resolution of a cyclic quotient surface singular-
ity (X, 0) is a P -resolution Y of (X, 0) such that it has only Wahl singularities
and it has only one exceptional curve C+.

Therefore there is a one-to-one correspondence between minimal symplectic
fillings with b2 = 1 and extremal P -resolutions.

Following [3, §4], the extremal P -resolution Y has at most two Wahl singu-
larities 1

m2
i
(1,miai − 1) for i = 1, 2 on the curve C+. Here if we have smooth

points, then we set mi = ai = 1. Let

m2
1

m1a1 − 1
= [f1, . . . , fs] and

m2
2

m2a2 − 1
= [g1, . . . , gt]

and c = −(C+ · C+) on the minimal resolution of Y . Then we have
n

a
= [fs, . . . , f1, c, g1, . . . , gt].

4. From symplectic fillings to M-resolutions

Let (X, 0) be a cyclic quotient surface singularity 1
n (1, a). In [8], the au-

thors with J. Park and G. Urzua created an algorithm for constructing the
P -resolution Y of (X, 0) for a given k ∈ K(n/n − a) whose Milnor fiber is
diffeomorphic to Wn,a(k). The algorithm is based on the semi-stable minimal
model program for complex 3-folds. We briefly introduce the algorithm. For
details, refer [8, §10].

Let n/a = [b1, . . . , br] and n/(n− a) = [a1, . . . , ae]. Let

di := ai − ki.
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Since [b1, . . . , br, 1, ae, . . . , a1] = 0, we have a chain of CP1’s contracting to a
smooth point whose dual graph is given by:

−b1

E1

−b2

E2

−br−1

Er−1

−br

Er

−1

E

−ae

De

−a2

D2

−a1

D1

Notice that ∪ri=1Ei is the minimal resolution X̃ of (X, 0).
Each P -resolution Y of (X, 0) is dominated by the maximal resolution of

(X, 0) so that the minimal resolution Ỹ is also a linear chain of CP1’s. Hence
we can think of the singularities and the CP1’s in the P -resolution Y are near
or far from the (−1)-curve E. So we can explain the P -resolution Y associated
to k = (k1, . . . , ke) by constructing the singularities of class T and CP1’s in Y
in the order in which they are closest to the (−1)-curve E.

We consider the dual part:

−ae

De

−ae−1

De−1

−a2

D2

−a1

D1

Let us attach di disjoint (−1)-curves to Di, each transversally at one point. The
(recursive) algorithm for constructing the corresponding P -resolution from k is
as follows:

Step I. (a) If de 6= 0, then we have an Ade−1 singularity in the first CP1.
(b) If de = 0, we find the smallest nonnegative integer r such that

de−(r+1) 6= 0. Then we have a T-singularity

1

de−(r+1)n′2
(1, de−(r+1)n

′a′ − 1)

with
n′

a′
= [ae, . . . , ae−r].

Step II. Now we contract all (−1)-curves attached to De (if Step I(a)) or to
De−(r+1) (if Step I(b)), and all (−1)-curves after that coming from
De, De−1, . . . , D1, until there are none.

After this, we obtain the new cyclic quotient surface singularity whose dual
exceptional divisor is what is left in Step II from De, De−1, . . . , D1. We then
repeat the above procedure.

Example 4.1 (Continued from Example 2.1). The P -resolutions of the cyclic
quotient surface singularity 1

19 (1, 7) corresponding to k ∈ K(19/19− 7) are as
follows:

−3

(1, 2, 2, 1)

−4 −2 −3

(1, 3, 1, 2)

−4 −2 −4

(2, 2, 1, 3)

−1 −5 −2
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In detail, let k = (2, 2, 1, 3). Since 19/19− 7 = [2, 3, 2, 3], we have d1 = 0, d2 =
1, d3 = 1, d4 = 0. Since d3 = 1 6= 0, we have n′/a′ = [3]. So we have a
T-singularity 1/32(1, 2) = [5, 2] on the rightmost part of the corresponding
P-resolution to k. Hence we have a partial resolution 4 − 1 − [5, 2] of the P-
resolution. Applying Step II, the remained dual part is 2 − 2 − 2 with d1 =
0, d2 = 1, d3 = 0. Hence we have a T-singularity [4]. Therefore the P-resolution
corresponding to k = (2, 2, 1, 3) is [4]− 1− [5, 2].

5. Symplectic fillings with b2 = 1

We classify lens spaces L(n, a) that admit minimal symplectic fillings with
b2 = 1 using the algorithm in the previous Section 4.

According to Corollary 2.3, a lens space L(n, a) has a minimal symplectic
filling W with b2(W ) = 1 if and only if

Case I. There are two different indices α, β (1 ≤ α < β ≤ e) such that
aα − kα = aβ − kβ = 1 and ai − ki = 0 for all i 6= α, β; or

Case II. There is one index γ such that aγ − kγ = 2 and ai − ki = 0 for all
i 6= γ.

5.1. Case I

Assume Case I. Let
m1

a1
= [a1, . . . , aα−1] and

m2

a2
= [ae, . . . , aβ+1].

Here if α = 1 or β = e, then we set m1 = a1 = 1 or m2 = a2 = 1, respectively.
Let

δ

ε
= [aα+1, . . . , aβ−1]

if α+ 1 < β; or we set δ = 1 if α+ 1 = β. Finally, let

c =
δ +m1a2 +m2a1

m1m2
.

Proposition 5.1. Assume Case I. Then one of the following holds:

(a) n/a = [fs, . . . , f1, c, g1, . . . , gt] for α 6= 1 and β 6= e; or
(b) n/a = [c, g1, . . . , gt] for α = 1 and β 6= e; or
(c) n/a = [fs, . . . , f1, c] for α 6= 1 and β = e; or
(d) n/a = [c] for α = 1 and β = e.

Proof. According to the algorithm in the previous section and [3, Proposition
4.1], the corresponding extremal P -resolution of (X, 0) to the sequence k for
Case I is given by:

−fs −f1 −c −g1 −gt

Here we have smooth points if mi = ai = 1. Hence the assertion follows. �

Conversely,
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Proposition 5.2. Suppose that the Hirzebruch-Jung continued fraction of n/a
for a lens space L(n, a) is equal to one of the Hirzebruch-Jung fractions given
in Proposition 5.1. If δ ≥ 1, then L(n, a) admits a minimal symplectic filling
with b2 = 1.

Proof. Let Y be a partial resolution of the cyclic quotient surface singularity
(X, 0) = 1

n (1, a) given by:

−fs −f1 −c

C+

−g1 −gt

According to [3, §4], we have KY ·C+ = δ
m1m2

> 0. Hence Y is an extremal P -

resolution of (X, 0). So L(n, a) admits a minimal symplectic filling with b2 = 1
corresponding to the extremal P -resolution Y . �

Case I is also treated in [3] (see also Urzua-Vilches [10]) in a different context.
Notice that if we attach (−1)-curves (ai−ki)-times to each vertices ai, then after
contracting all the (−1)-curves that are attached we get a sequence {k1, . . . , ke},
which represents a zero Hirzebruch-Jung continued fraction.

Proposition 5.3 ([3, p. 325]). For any sequence of integers {a1, . . . , ae} with
ai ≥ 2 (i = 1, . . . , e), there exist at most two pairs (α, β) with α < β such that

[a1, . . . , aα − 1, . . . , aβ − 1, . . . , ae] = 0.

5.2. Case II

Assume that we are in Case II.

Proposition 5.4. Case II occurs if and only if either (n, a) = (2, 1) or (n, a) =
(2m2, 2ma− 1) for some integers m, a with 0 < a < m and (m, a) = 1.

Proof. At first, suppose δ = e. According to the algorithm in the previ-
ous section, we have an A1-singularity (that is, the 1

2 (1, 1)-singularity) on
the corresponding P -resolution Y of the cyclic quotient surface singularity
(X, 0) = 1

n (1, a). But the Milnor fiber of the A1-singularity has already b2 = 1.
Hence there are no other exceptional curves and singularities on Y . Hence
(X, 0) is the A1-singularity.

Suppose now that δ < e. Let m/a = [ae, . . . , aδ−1]. Then we have the T -
singularity 1

2m2 (1, 2ma− 1) on the P -resolution Y according to the algorithm.

By Corollary 3.8, the T -singularity 1
2m2 (1, 2ma − 1) has b2 = 1. Therefore Y

cannot have any other exceptional curves and singularities on it. Hence (X, 0)
is the T -singularity 1

2m2 (1, 2ma− 1). �

5.3. Classification

We now classify lens spaces admitting minimal symplectic fillings with b2 =
1.
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Theorem 5.5. A lens space L(n, a) admits a minimal symplectic filling with
b2 = 1 if and only if either (1) (n, a) = (2, 1); or (2) (n, a) = (2m2, 2ma−1) for
some integers m, a with 0 < a < m and (m, a) = 1; or (3) the Hirzebruch-Jung
continued fraction of n/a is one of the Hirzebruch-Jung fractions in Proposi-
tion 5.1.

Proof. This is an easy consequence of Proposition 5.1, Proposition 5.2, and
Proposition 5.4. �

Theorem 5.6. A lens space L(n, a) may have at most two different minimal
symplectic fillings with b2 = 1 up to deformations and symplectomorphisms.

Proof. The assertion follows from Proposition 5.3 and Proposition 5.4. �
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