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A CONSTRAINT ON SYMPLECTIC STRUCTURE OF
bt =1 MINIMAL SYMPLECTIC FOUR-MANIFOLD

Yong SEUNG CHO AND WoON Young KiM

ABSTRACT. Let X be a minimal symplectic four-manifold with b =
1 and ¢;(K)? > 0. Then we show that there are no symplectic struc-
tures w such that ¢;(K)-w > 0, if X contains an embedded symplectic
submanifold ¥ satisfying f;; ci(K) < 0.

1. Introduction

The results on the Seiberg-Witten invariants of four-manifolds have
played important roles on studying symplectic structures of them. One
of these is

THEOREM 1.1 (Taubes). Let X be an oriented symplectic four man-
ifold with bf > 1. Let w be a symplectic form compatible with the ori-
entation. Then ci(K*') on X has Seiberg-Witten invariant £:1. (where
c1(K) means the first Chern class of the canonical bundle associated with
the almost complex structure on X).

This result shows that four-manifolds whose Seiberg-Witten invariants
do not take value £1 cannot have any symplectic structure.

THEOREM 1.2 (Taubes). Let X be an oriented symplectic four-manifold
with b > 1. Let E be a nontrivial complex bundle over X and use E to
define a Spin€-structure L = det(S*) € Spin where S* = Ea(K'®FE).
Then SW(L) = +Gr(c:(E)).
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Here Taubes uses a new kind of Gromov invariant Gr(V) counting
embedded symplectic surfaces which represent the fundamental class of
the Poincaré dual of the cohomology class V € H(X;Z).

Assuming bj > 1 Taubes’ above result says that c;(K) has a nonzero
Gromov invariant and that the Poincaré dual of ¢;(K) € H?(X;Z) is
represented by a smooth symplectic curve which may not be connected.

Taubes also studies symplectic 4-manifolds with b5 = 1, in which the
Seiberg-Witten invariants depend on the metrics of the manifolds. In
particular he shows that there is no symplectic w on CP? with ¢;(K)-w >
0, and that ¢;(K) - w < 0 for the standard symplectic structure w on
CP?. By McDuff’s theorem on the intersection of symplectic curves, the
intersection number of Poincaré dual to ¢;(K) and a symplectic curve in
X is non-negative. So one could easily conclude that if a symplectic four-
manifold contains a symplectically embedded curve ¥ with ¢;(K)-[£] < 0,
then its b must be one.

In this note we would like to extend Taubes’ result on CP? to minimal
symplectic four-manifolds containing an embedded symplectic curve &
with ¢(K) - [2] < 0.

2. Wall-crossing

For a four-manifold X with b = 1, the Seiberg-Witten invariant is
no longer a smooth invariant of the underlying manifold, because we can
not avoid reducible solutions when we deform metrics on X. The moduli
space has singularities at reducible solutions, and the invariant may jump.
Given a metric g, there is a unique associated self-dual harmonic 2-form
w, for g, mod nonzero scalars. For Seiberg-witten equation, a reducible
solution exists if and only if P, F4 = 0, that is ¢;(L) - w, = 0.

Recall the Seiberg-Witten, SW, equations in the Taubes’ construction.

Standard SW equations:

DAw = 07

1
Py =7 ®9").
Perturbed SW equations:
Dy =0,
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1 it
PiFa=r( @ ") +tPFay = 5
where 0 <t <1 and A is a canonical connection on K! (up to gauge
equivalence).
Deformed SW equations:
Dayp =0,
1 . w
P.Fy = Zr(w QY*) + PLFy, — el
where r > 1 is a real parameter. ~
A wall can appear in any of following three types.
Type 1. The standard metric wall: where anti-self-dual harmonic 2-
form suddenly appear.
Type 2. From the standard SW equation to the perturbed SW equa-
tion: there might be some wall for ¢ € [0, 1].
Type 3. From the perturbed SW equation to the deformed SW equa-
tion: there might be some wall for r > 1.

Let us recall some results in (8] for a Spin C-structure S* = E®(K~!'®
E) on a symplectic manifold (X,w) with b = 1.

LeMMA 2.1. [8] If ¢;(E) - w < 0 (in particular, if ¢;(E) - w = 0), then
there are no walls in type 3.

Proof. Suppose that (A, 0) occurs as a reducible solution. Wedge w
on the both sides of the deformed equation

T
i
for r > 1 and integrate over X, then we get

8re(K '@ E?) - w = 8me) (K™Y - w+ 1w - w.

P.Fy= P+FA0,“

So, 16mc,(E) - w = rw - w. But since we assume that ¢;(E)-w < 0, any r
in the region 7 > 0 does not satisfy the above equation. 0

LEMMA 2.2. [8] Ifci(K™' 4+ 2E)-w > 0, then there is an odd number
of walls in type 2 and 3. If c;(K~' + 2E) - w < 0, then there is an even
number of walls in type 2 and 3.

211



Yong Seung Cho and Won Young Kim

3. Minimal symplectic four-manifolds with b =1

In this section we would like to introduce some results on minimal
symplectic four-manifolds with b5 = 1.

THEOREM 3.1 (McDuff). If a symplectic four-manifold X has a non-
negative self-intersecting rational curve, then it must be symplectomor-
phic to either rational, rational ruled, or irrational ruled manifolds.

LEMMA 3.2. Let ¢;(K) be an element in H*(X; Z) such that c;(K)? <
0. Then there exists an integral element Z of the forward light cone such
that Z-Z =0 and ¢(K) - Z < 0.

If a minimal symplectic 4-manifold X with ¢,(K)? < 0 is b;(X) = 0,
using the adjunction formula and McDuff’s Theorem 3.1, we can show
that SW(K™! + 2kZ) = Gr(kZ) is zero identically for every positive in-
teger k. Here Z is an integral class defined in Lemma 3.2. For sufficiently
large k,

(K +2kZ) - w >0,
and by the Lemma 2.2, the number of walls crossed in two types is odd.
If we deform from Taubes’ chamber, we have nonzero SW invariants for
sufficiently large k (by using the wall crossing formula in the case of
by = 0). But this contradicts to the finiteness of basic classes. From this
fact we may have that

PROPOSITION 3.3. [6] If X is a minimal symplectic four-manifold with
c1(K)? < 0, then its first Betti number b; must be nonzero.

LEMMA 3.4. [6] Let X be a minimal symplectic four-manifold with
c1(K)? < 0. Then for all nonzeroy € H'(X;R), the map

yU: HY(X;R) — H*(X;R)

must be nonzero and there exists an integral basis of H'(X;R) which is
nondegenerate.

Let C be a nonzero image of the cup product U : H! x H! — H?2.
If we choose C in the forward light cone, we know that

COROLLARY 3.5. [6] A SpinC-structure L (with nonnegative moduli
space dimension) has a non-zero wall crossing if ¢;(L) - C # 0.
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Suppose that X is not an irrational ruled surface. As in the Propo-
sition 3.3, we can show that Gr(kZ) = 0 for all classes k- Z and the
number of walls crossed in the type 2 and 3 is odd for sufficiently large k.
Then by the finiteness of Seiberg-Witten basic classes and by Corollary
3.5, we have ¢;(K~! + 2kZ) - C = 0 for sufficiently large k. So,

a(K)-C=0, Z-C=0

and from the fact that for any nonzero elements a, b in the closure of the
forward cone, a - b = 0 if and only if b = ya for some v > 0, we get

C=aZ (a#0).
This contradicts to ¢;(K) - Z < 0. Therefore we get

THEOREM 3.6. [6] Let X be a minimal symplectic four manifold with
c1(K)? < 0. Then X must be irrational ruled.

Also we could see from [6] that

THEOREM 3.7. Let X be a symplectic four-manifold by = 1. If c;(K)-
w < 0, then it must be either rational, rational ruled, or irrational ruled.

4. Main theorem

We are now ready to prove our main theorem:

THEOREM 4.1. Let X be a minimal symplectic four-manifold with
by =1 and c;(K )2 > 0. Let & be an embedded symplectic 2-dimensional
submanifold satisfying ¢,(K) - ¥ < 0. Then there is no symplectic struc-
ture w on X such that c;(K)-w > 0.

First we consider a wall in type 1.

LEMMA 4.2. Let X be abi = 1 symplectic four-manifold. If c;(K)* >
0 and ¢;(K) - w > 0, then there are no walls in type 1.

Proof. Suppose that there is a wall in type 1. Then there is a unique
self-dual harmonic 2-form w' of norm one so that for a L € H*(X;Z) with
L*>K?>0, ¢(L) -w" = 0. The quadratic form can be diagonalized in a
real basis. The form of coordinate system (z, y1, Y2, * - * , Y») is represented
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as .’132 - Z?:] yzz If CI(L) = (xaylvy% tte ,yn) and w/ = (aa b17b27 e abn)a
then

ol ==Y ¥ >K*>0, (W)P=d-)H=1
i=1 i=1

and .
e(l) -w =za— Zyibi = 0.
i=1

If welet a =3  (y:;/z)b;, then the Cauchy-Schwartz inequality implies

n . 2 n 2 n n
- (30) = (55) (59) 0

since z2 — Y7 42 > 0. But a® = 1 + 3.7, b? leads to contradiction. O

3=1 "¢

Second we consider a wall in type 2.
LEMMA 4.3. If ¢;(K) - w > 0, then there are no walls in type 2.

Proof. By Lemma 2.2, since ¢;(K™!) -w < 0, there is an even number
of reducible solutions to the equations

1 it
Dap =0, Fi= Zr(¢®¢*)+tF,;—’Zw, 0<t<1.

Wedge w on the both sides of the perturbed SW equations and integrate
over X, then we have
8rer(K™') - w=8rtey (K™Y w + tw - w.
So
8r(l —t)ey (K™Y w=tw - w.
If c;(K™!) - w < 0, then it is impossible. o
Finally by Lemma 2.1, if ¢;(E) -w = 0, then there are no walls in type

3.
Also we consider following theorem.

THEOREM 4.4 (Taubes). Let X be a compact, oriented 4-manifold
with by = 1 and with a symplectic form. Then the symplectic form
canonically defines a chamber in which the equivalence SW = Gr holds
for classes e € H*(X;Z) which obey (e, s) > —1 wherever s € Hy(X;Z)
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is represented by an embedded, symplectic sphere with self-intersection
number 1.

This theorem is proved in [13]. Now we prove Theorem 4.1

Proof of Theorem 4.1 Suppose that there is a symplectic structure w
such that ¢;(K) - w > 0. Then by Lemma 4.2 and Lemma 4.3, there
are no walls. Hence SW(K) is an invariant independent of the metric
and its value SW(K) = £1. Furthermore since we assumed that X is
minimal, Taubes’ theorem SW(K) = +£Gr(c;(K)) holds in a chamber
and we conclude that SW(K) = £Gr(c;(K)) is not equal to zero in the
chamber. So the Poincaré dual of ¢;(K) is represented by a symplectic
curve and then ¢;(K) - [¥] > 0 for a symplectic submanifold ¥ on X.
This contradicts to our assumption. O

5. Some examples

If we apply Theorem 4.1 to the complex projective plane CP?, then
we have

THEOREM 5.1 (Taubes). The manifold CP? has no symplectic form
w for which ¢;(K) - [w] > 0. (The standard Kéhler structure on CP? has
a(K) - jw] <0.)

Let X be an S*-bundle over a Riemannian surface T with genus g(X) =
0Oor 1l Let o(K) = azx + by and w = cz + dy, where z and y represent
the base class and fiber class, respectively. Then ¢;(K)? = 2x + 30 > 0
and so that ¢;(K)* = 2ab > 0 if X is a trivial bundle. We know that the
fiber class y is represented by an embedded rational curve which cannot
be decomposed into a disjoint union of embedded smooth submanifolds.
Let ¢i(K) -y = a < 0, then b < 0. From Theorem 4.1, ¢/(K) - w =
(az + by) - (cx + dy) = bc + ad < 0 with w? = 2cd > 0. Then ¢ > 0 and
d> 0.

If X is nontrivial S*-bundle, then c;(K)? = a?+2ab > 0 and a+2b < 0
if a < 0. Then ¢{(K)-w = ac+ bc+ ad < 0 where w? = % + 2¢d =
c(c+2d) > 0. Since 2¢;(K)-w = 2(ad+ac+bc) = a(c+2d)+c(a+2b) < 0.
Then ¢ > 0 and ¢+ 2d > 0.
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PROPOSITION 5.2. [8] Let X be a ruled surface over a Riemannian
surface ¥ with genus g(X) = O or 1. Let ¢;(K) = az+by and w = cz+dy,
where a < 0.

(i) If X is trivial, then ¢ > 0 and d > 0.

(ii) If X is nontrivial, then ¢ >0 and ¢+ 2d > 0.
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