• Title/Summary/Keyword: surface crystalline

Search Result 1,134, Processing Time 0.034 seconds

Synthesis of Silicon-Carbon by Polymer Coating and Electrochemical Properties of Si-C|Li Cell (고분자 도포를 이용한 실리콘-탄소의 합성 및 Si-C|Li Cell의 전기화학적 특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay-Hyeok;Min, Byung-Chul;Choi, Im-Goo;Park, Chul-Wan;Lee, Kyeong-Jik;Moon, Seong-In;Yun, Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of silicon powder covered by polyaniline(PAn). Physical and electrochemical properties of the Si-C composites were characterized by the particle size analysis, X-ray diffraction technique, scanning electron microscope, and electrochemical test of battery. The average particle size of the Si was increased by the coating of PAn and somewhat reduced by the carbonization to give silicone-carbon composites. XRD analysis' results were confirmed co-existence of crystalline silicon and amorphous-like carbon. SEM photos showed that the silicon particle were well covered with carbonacious materials depend on the PAn content. Si-C|Li cells were fabricated using the Si-C composites and were tested using the galvanostatic charge-discharge test. Si-C|Li cells gave better electrochemical properties than that of Si|Li cell. Si-C|Li cell using the Si-C from HCl undoped PAn Precursor showed better electrochemical properties than that from HCl doped PAn Precursor. Using the electrolyte containing FEC as an additive, the initial discharge capacity was increased. After that the galvanostatic charge-discharge test with the GISOC(gradual increasing of the state of charge) condition was carried out. Si-C(Si:PAn:50:50 wt. ratio)|Li cell showed 414 mAh/g of the reversible specific capacity, 75.7% of IIE(initial intercalation efficiency), 35.4 mAh/g of IICs(surface irreversible specific capacity).

Morphological Changes of Uterine and Vaginal Epithelium in Postpartum Korean Native Goats (韓國 在來山羊에 있어서 分娩後 子宮 및 膣上皮細胞의 形態學的 變化)

  • Ham, Tae-Su;Byeon, Myeong-Dae
    • Korean Journal of Animal Reproduction
    • /
    • v.15 no.1
    • /
    • pp.23-32
    • /
    • 1991
  • This present study was designed to investigate by light microscope the morphologic changes in the uterine and vaginal epithelium of postpartum Korean native goats. Tissues were obtained for study on days 1, 3, 10 and 21 postpartum. The results obtained in this study were as followed; 1. Light microscopically, the height of the uterine epithelium was gradually decreased with the intervals and secretory profiles of apocrine were observed at between 1 and 10 days postpartum. The frequency of the light and dark cells with Masson's trichrom stain was high at 1 day postpartum an low at 21 days. A few of PAS positive cells were generally observed at 1 day postpartum, while PAS positive cells were not seen at 21 days. Numerous globule leucocytes were found between the epithelium and in the subepithelium at 1 day and thereafter moderate globule leucocytes were also found in the other periods. The intraepithelial vacuoles with crystalline structure appeared at 10 days postpartum. 2. The height of the vaginal mucosa was gradually decreased with the intervals but the highest layer was found at 3 days postpartum. The frequency of the mast cells was increased with times. At 3 and 10 days postpartum the shape of the surface-epithelium was cuboidal and the vacuolation of the epithelium was observed at 10 and 21 days.

  • PDF

The Preparation of porous ceramic material from aluminum waste dross (알루미늄 廢드로스를 活用한 세라믹 多孔體의 製造)

  • Kim, Ki-Seok;Park, Jay-Hyun;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.19-27
    • /
    • 2005
  • The recycling possibility of aluminum waste dross(AWD) as a ceramic raw material of porous light-weight material was examined. A aluminum waste dross was washed 4-7 consecutive times and roasted at 900$^{\circ}% for 1hour as pre-treatments. The properties of the pre-treatment of aluminum waste dross was investigated. It was conformed by XRD result that the spinel crystalline was grown in AWD, after roasting. After the roasted AWD was ground in aqueous state, the sodium hexaphosphate(SHP) as a dispersant which is used for stabilizing the concentrated slurry was added to the AWD slurry. The porous material was prepared by slurry foaming method with surfactant at room temperature. The foamed slurry volumes were 2 and 3 times of the original slurry volume. The properties of porous material with extended volume of 3 times was following: the porosity was about 84%, bulk density was 0.59 g/cm$^3$, the range of pore was from 50 ${\mu}m$ to 500 ${\mu}m$ and mean pore size was about 200 ${\mu}m$. AWD porous material was sintered at 1150$^{\circ}C-1250$^{\circ}C. It was colcluded that AWD was sintered well at 1200$^{\circ}C from material surface observation by SEM.

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

Synthesis and Conductive Properties of Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5) by Sol-Gel Method (Sol-Gel법에 의한 Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5)의 합성 및 전도특성)

  • Moon, Jung-In;Cho, Hong-Chan;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.346-351
    • /
    • 2012
  • $Li_{1+x}Al_xTi_{2-x}(PO_4)_3$(LATP) is a promising solid electrolyte for all-solid-state Li ion batteries. In this study, LATP is prepared through a sol-gel method using relatively the inexpensive reagents $TiCl_4$. The thermal behavior, structural characteristics, fractured surface morphology, ion conductivity, and activation energy of the LATP sintered bodies are investigated by TG-DTA, X-ray diffraction, FE-SEM, and by an impedance method. A gelation powder was calcined at $500^{\circ}C$. A single crystalline phase of the $LiTi_2(PO_4)_3$(LTP) system was obtained at a calcination temperature above $650^{\circ}C$. The obtained powder was pelletized and sintered at $900^{\circ}C$ and $1000^{\circ}C$. The LTP sintered at $900{\sim}1000^{\circ}C$ for 6 h had a relatively low apparent density of 75~80%. The LATP(x = 0.3) pellet sintered at $900^{\circ}C$ for 6 h was denser than those sintered under other conditions and showed the highest ion conductivity of $4.50{\times}10^{-5}$ S/cm at room temperature. However, the ion conductivity of LATP (x = 0.3) sintered at $1000^{\circ}C$ decreased to $1.81{\times}10^{-5}$ S/cm, leading to Li volatilization and abnormal grain growth. For LATP sintered at $900^{\circ}C$ for 6 h, x = 0.3 shows the lowest activation energy of 0.42 eV in the temperature range of room temperature to $300^{\circ}C$.

Growth of Epitaxial AlN Thin Films on Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법을 이용한 사파이어 기판 위 질화알루미늄 박막의 에피탁시 성장)

  • Lee, Hyo-Sung;Han, Seok-Kyu;Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Hong, Soon-Ku;Jeong, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.634-638
    • /
    • 2011
  • We report growth of epitaxial AlN thin films on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. To achieve two-dimensional growth the substrates were nitrided by nitrogen plasma prior to the AlN growth, which resulted in the formation of a two-dimensional single crystalline AlN layer. The formation of the two-dimensional AlN layer by the nitridation process was confirmed by the observation of streaky reflection high energy electron diffraction (RHEED) patterns. The growth of AlN thin films was performed on the nitrided AlN layer by changing the Al beam flux with the fixed nitrogen flux at 860$^{\circ}C$. The growth mode of AlN films was also affected by the beam flux. By increasing the Al beam flux, two-dimensional growth of AlN films was favored, and a very flat surface with a root mean square roughness of 0.196 nm (for the 2 ${\mu}m$ ${\times}$ 2 ${\mu}m$ area) was obtained. Interestingly, additional diffraction lines were observed for the two-dimensionally grown AlN films, which were probably caused by the Al adlayer, which was similar to a report of Ga adlayer in the two-dimensional growth of GaN. Al droplets were observed in the sample grown with a higher Al beam flux after cooling to room temperature, which resulted from the excessive Al flux.

Physicochemical and Organoleptic Properties of Starch Isolated from Gamma-Irradiated Acorn (감마선 조사 도토리로부터 분리한 전분의 이화학적 및 관능적 특성)

  • Kwon, Joong-Ho;Kim, Soo-Jin;Lee, Jung-Eun;Lee, Soo-Jeong;Kim, Sung-Kon;Kim, Jeong-Sook;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1007-1012
    • /
    • 2002
  • Physicochemical and organoleptic properties were investigated in starch extracted from acorn gamma-irradiated for insect control. Hunter's color L, a, and b values were unchanged upon irradiation at 0.25 to 10 kGy. Scanning electron microscopic observation revealed no changes with gamma irradiation at 1 kGy, that is effective for disinifestation, whereas 10 kGy resulted in some clefts on the starch surface. X-ray diffraction analysis showed patterns of both amorphous and crystalline regions were not different among the treatment groups. Water-binding property, swelling power, solubility, and gelatinization patterns of starch were influenced by irradiation dose, but 1 kGy dose was not detrimental to the physicochemical properties. Textural parameters of acorn gel were relatively stable, but significant reductions were found in hardness, adhesiveness, and chewiness in samples irradiated at 3 kGy or higher. Rrsults revealed that irradiation at 1 kGy or lower could be applied for insect control without causing apparent changes in physicochemical and organoleptic properties of acorn starch.

A Classical Molecular Dynamics Study of the Mg2+ Coordination in Todorokite (토도로카이트 내 Mg2+ 배위구조에 대한 고전분자동력학 연구)

  • Kim, Juhyeok;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.151-162
    • /
    • 2019
  • Todorokite, a tunnel-structured manganese oxide, can contain cations within the relatively large nanopores created by the $3{\times}3$ Mn octahedra. Because todorokite is poorly crystalline and found as aggregates mixed with other phases of Mn oxides in nature, the coordination structure of cations in the nanopores is challenging to fully characterize in experiment. In the current article, we report the atomistic coordination structures of $Mg^{2+}$ ions in todorokite tunnel nanopores using the classical molecular dynamics (MD) simulations. In experiment, $Mg^{2+}$ is known to occupy the center of the nanopores. In our MD simulations, 60 % of $Mg^{2+}$ ions were located at the center of the nanopores; 40 % of the ions were found at the corners. All $Mg^{2+}$ located at the center formed the six-fold coordination with water molecules, just as the ion in bulk aqueous solution. $Mg^{2+}$ ions at the corners also formed the six-fold coordination with not only water molecules but also Mn octahedral surface oxygens. The mean squared displacements were calculated to examine the dynamic features of $Mg^{2+}$ ions in the one-dimensional (1D) nanopores. Our MD simulations indicate that the dynamic features of water molecules and the cations observed in bulk aqueous solution are lost in the 1D nanopores of todorokite.

A Study on the Cementation Reaction of Copper-containing Waste Etching Solution to the Shape of Iron Samples (철 샘플에 따른 구리 함유 폐에칭액의 시멘테이션 반응에 대한 연구)

  • Kim, Bo-Ram;Jang, Dae-Hwan;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.240-246
    • /
    • 2021
  • The waste etching solution for chip on film (COF) contained about 3.5% copper, and it was recovered through cementation using iron samples. The effect of cementation with plate, chip, and powder iron samples was investigated. The molar ratio (m/r) of iron to copper was used as a variable in order to increase the recovery rate of copper. As the molar ratio increased, the copper content in the solution rapidly decreased at the beginning of the cementation reaction. Before and after the reaction, the copper content of the solution was determined by Inductively Coupled Plasma (ICP) using copper concentration according to time. After cementation at room temperature for 1 hour, the recovery rate of copper had increased the most in the iron powder sample, having the largest specific surface area of the samples, followed by the chip and plate samples. The recovered copper powder was characterized for its crystalline phase, morphology, and elemental composition by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDS), respectively. Copper and unreacted iron were present together in the iron powder samples. The optimum condition for recovering copper was obtained using iron chips with a molar ratio of iron to copper of 4 giving a recovery rate of about 98.4%.

Immobilization of As and Pb in Contaminated Soil Using Bead Type Amendment Prepared by Iron NanoparticlesImpregnated Biochar (철 나노 입자가 담지된 바이오차 기반 비드 형태 안정화제를 이용한 비소 및 납 오염토양의 안정화)

  • Choi, Yu-Lim;Kim, Dong-Su;Kang, Tae-Jun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.247-257
    • /
    • 2021
  • In this work, Iron Nano-Particles Impregnated BioChar/bead (INPBC/bead) soil amendment was developed to increase biochar's reactivity to As in soil and preventing possible wind loss. Prior to preparation of INPBC/bead, INPBC was produced utilizing lignocellulosic biomass and Fe(III) solution in a hydrothermal method, followed by a calcination process. Then, the bead type amendment, INPBC/bead was produced by cross-linking reaction of alginate with INPBC. FT-IR, XRD, BET, and SEM-EDS analyses were utilized to characterize the as-synthesised materials. The particle size range of INPBC/bead was 1-4 mm, and different oxygen-containing functional groups and Fe3O4 crystalline phase were produced on the surface of INPBC/bead, according to the characterization results. The soil cultivation test was carried out in order to assess the stabilization performance of INPBC/bead utilizing As and Pb-contaminated soil obtained from an abandoned mining location in South Korea. After 4 weeks of culture, TCLP and SPLP extraction tests were performed to assess the stabilization efficacy of the amendment. The TCLP and SPLP findings revealed that raising the application ratio improved stabilizing efficiency. The As stabilization efficiency was determined to be 81.56 % based on SPLP test findings for a 5% in (w/w) INPBC/bead treatment, and the content of Pb in extracts was reduced to the limit of detection. According to the findings of this study, INPBC/bead that can maintain pH of origin soil and minimize wind loss might be a potential amendment for soil polluted with As and heavy metals.