Browse > Article
http://dx.doi.org/10.9727/jmsk.2019.32.3.151

A Classical Molecular Dynamics Study of the Mg2+ Coordination in Todorokite  

Kim, Juhyeok (Department of Geology, Kangwon National University)
Lee, Jin-Yong (Department of Geology, Kangwon National University)
Kwon, Kideok D. (Department of Geology, Kangwon National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.32, no.3, 2019 , pp. 151-162 More about this Journal
Abstract
Todorokite, a tunnel-structured manganese oxide, can contain cations within the relatively large nanopores created by the $3{\times}3$ Mn octahedra. Because todorokite is poorly crystalline and found as aggregates mixed with other phases of Mn oxides in nature, the coordination structure of cations in the nanopores is challenging to fully characterize in experiment. In the current article, we report the atomistic coordination structures of $Mg^{2+}$ ions in todorokite tunnel nanopores using the classical molecular dynamics (MD) simulations. In experiment, $Mg^{2+}$ is known to occupy the center of the nanopores. In our MD simulations, 60 % of $Mg^{2+}$ ions were located at the center of the nanopores; 40 % of the ions were found at the corners. All $Mg^{2+}$ located at the center formed the six-fold coordination with water molecules, just as the ion in bulk aqueous solution. $Mg^{2+}$ ions at the corners also formed the six-fold coordination with not only water molecules but also Mn octahedral surface oxygens. The mean squared displacements were calculated to examine the dynamic features of $Mg^{2+}$ ions in the one-dimensional (1D) nanopores. Our MD simulations indicate that the dynamic features of water molecules and the cations observed in bulk aqueous solution are lost in the 1D nanopores of todorokite.
Keywords
Todorokite; nanopores; classical molecular dynamics simulations; magnesium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chitrakar, R., Makita, Y., and Sonoda, A. (2014) Cesium adsorption by synthetic todorokite-type manganese oxides. Bulletin of the Chemical Society of Japan, 87, 733-739.   DOI
2 Cui, H., Feng, X., Tan, W., Zhao, W., Wang, M.K., Tsao, T.M., and Liu, F. (2010) Synthesis of a nanofibrous manganese oxide octahedral molecular sieve with Co $(NH_3)_6^^{3+}$ complex ions as a template via a reflux method. Crystal Growth and Design, 10, 3355-3362.   DOI
3 Cygan, R.T., Liang, J.J., and Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255-1266.   DOI
4 Duncan, M.J., Leroux, F., Corbett, J.M., and Nazar, L.F. (1998) Todorokite as a Li insertion cathode comparison of a large tunnel framework "$MnO_2$" structure with its related layered structures. Journal of the Electrochemical Society, 145, 3746-3757.   DOI
5 Dyer, A., Pillinger, M., Newton, J., Harjula, R., Moller, T., and Amin, S. (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chemistry of Materials, 12, 3798-3804.   DOI
6 Ewald, P.P. (1921) The computation of optical and electrostatic lattice potentials. Annalen der Physik, 64, 253-287.   DOI
7 Feng, Q., Kanoh, H., Miyai, Y., and Ooi, K. (1995) Metal ion extraction/insertion reactions with todor okite-type manganese oxide in the aqueous phase. Chemistry of Materials, 7, 1722-1727.   DOI
8 Feng, X.H., Tan, W.F., Liu, F., Wang, J.B., and Ruan, H.D. (2004) Synthesis of todorokite at atmospheric pressure. Chemistry of Materials, 16, 4330-4336.   DOI
9 Gao, T., Shi, Y., Liu, F., Zhang, Y., Feng, X., Tan, W., and Qiu, G. (2015) Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems. Journal of Hazardous Materials, 290, 106-116.   DOI
10 Frierdich, A.J., Hasenmueller, E.A., and Catalano, J.G. (2011) Composition and structure of nanocrystalline Fe and Mn oxide cave deposits: Implications for trace element mobility in karst systems. Chemical Geology, 284, 82-96.   DOI
11 Ghodbane, O., Pascal, J.L., and Favier, F. (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Applied Materials and Interfaces, 1, 1130-1139.   DOI
12 Goldberg, E.D. (1954) Marine geochemistry 1. Chemical scavengers of the sea. Journal of Geology, 62, 249-265.   DOI
13 Golden, D.C., Chen, C.C., and Dixon, J.B. (1986) Synthesis of todorokite. Science, 231, 717-719.   DOI
14 Gonzalez, M.A. (2011) Force fields and molecular dynamics simulations. ecole Thematique de la Societe Francaise de la Neutronique, 12, 169-200.
15 Gutzmer, J. and Beukes, N.J. (2000) Asbestiform manjiroite and todorokite from the Kalahari manganese field, South Africa. South African Journal of Geology, 103, 163-174.   DOI
16 Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983) Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926-935.   DOI
17 Halgren, T.A. (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: Potential form, combination rules, and vdW parameters. Journal of the American Chemical Society, 114, 7827-7843.   DOI
18 Harris, K.R. and Woolf, L.A. (1980) Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water. Journal of the Chemical Society, Faraday Transactions 1, 76, 377-385.   DOI
19 Holz, M., Heil, S.R., and Sacco, A. (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Physical Chemistry Chemical Physics, 2, 4740-4742.   DOI
20 Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33-38.   DOI
21 Julien, C. and Mauger, A. (2017) Nanostructured $MnO_2$ as electrode materials for energy storage. Nanomaterials, 7, 396.   DOI
22 Lind, C.J. and Hem, J.D. (1993) Manganese minerals and associated fine particulates in the streambed of Pinal Creek, Arizona, USA: A mining-related acid drainage problem. Applied Geochemistry, 8, 67-80.   DOI
23 Luo, J., Zhang, Q., Huang, A., Giraldo, O., and Suib, S.L. (1999) Double-aging method for preparation of stabilized Na- buserite and transformations to todorokites incorporated with various metals. Inorganic Chemistry, 38, 6106-6113.   DOI
24 Manceau, A., Lanson, M., and Geoffroy, N. (2007) Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochimica et Cosmochimica Acta, 71, 95-128.   DOI
25 Mark, P. and Nilsson, L. (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105, 9954-9960.   DOI
26 McKenzie, R.M. (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine, 38, 493-502.   DOI
27 Müller-Plathe, F. (1994) Permeation of polymers - A computational approach. Acta Polymerica, 45, 259-293.   DOI
28 McKeown, D.A. and Post, J.E. (2001) Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. American Mineralogist, 86, 701-713.   DOI
29 Menard, H.W. and Shipek, C.J. (1958) Surface concentrations of manganese nodules. Nature, 182, 1156.   DOI
30 Mills, R. (1973) Self-diffusion in normal and heavy water in the range 1-45. deg. Journal of Physical Chemistry, 77, 685-688.   DOI
31 Newton, A.G. and Kwon, K.D. (2018) Molecular simulations of hydrated phyllomanganates. Geochimica et Cosmochimica Acta, 235, 208-223.   DOI
32 Nose, S. (1991) Constant temperature molecular dynamics methods. Progress of Theoretical Physics Supplement, 103, 1-46.   DOI
33 Ohtaki, H. and Radnai, T. (1993) Structure and dynamics of hydrated ions. Chemical Reviews, 93, 1157-1204.   DOI
34 Ostwald, J. (1986) Some observations on the chemical composition of todorokite. Mineralogical Magazine, 50, 336-340.   DOI
35 Outram, J.G., Couperthwaite, S.J., and Millar, G.J. (2018) Enhanced removal of high Mn(II) and minor heavy metals from acid mine drainage using tunnelled manganese oxides. Journal of Environmental Chemical Engineering, 6, 3249-3261.   DOI
36 Plimpton, S.J. (1995) Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1-19.   DOI
37 Post, J.E. and Bish, D.L. (1988) Rietveld refinement of the todorokite structure. American Mineralogist, 73, 861-869.
38 Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J. (1977) Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327-341.   DOI
39 Post, J.E., Heaney, P.J., and Hanson, J. (2003) Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. American Mineralogist, 88, 142-150.   DOI
40 Riddick, J.A., Bunger, W.B., and Sakano, T.K. (1986) Organic Solvents: Physical Properties and Methods of Purification. John Wiley and Sons, New York, 1344p.
41 Shen, Y.F., Suib, S.L., and O'Young, C.L. (1994) Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. Journal of the American Chemical Society, 116, 11020-11029.   DOI
42 Shen, Y.F., Zerger, R.P., DeGuzman, R.N., Suib, S.L., McCurdy, L., Potter, D.I., and O'young, C.L. (1993) Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science, 260, 511-515.   DOI
43 Soper, A.K., and Phillips, M.G. (1986) A new determination of the structure of water at $25^{\circ}C$. Chemical Physics, 107, 47-60.   DOI
44 Svishchev, I.M. and Kusalik, P.G. (1994) Dynamics in liquid $H_2O$, $D_2O$, and $T_2O$: A comparative simulation study. Journal of Physical Chemistry, 98, 728-733.   DOI
45 Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K., and Soma, M. (2004) Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21-2. Environmental Science and Technology, 38, 6618-6624.   DOI
46 Verlet, L. (1967) Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159, 98-103.   DOI
47 Tian, Z.R., Xia, G., Luo, J., Suib, S.L., and Navrotsky, A. (2000) Effects of water, cations, and structure on energetics of layer and framework phases, NaxMgy $MnO_2{\cdot}nH_2O$. Journal of Physical Chemistry B, 104, 5035-5039.   DOI
48 Toner, B., Manceau, A., Webb, S.M., and Sposito, G. (2006) Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochimica et Cosmochimica Acta, 70, 27-43.   DOI
49 van der Spoel, D., van Maaren, P.J., and Berendsen, H.J. (1998) A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. Journal of Chemical Physics, 108, 10220-10230.   DOI
50 Webb, S.M., Fuller, C.C., Tebo, B.M., and Bargar, J.R. (2006) Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering. Environmental Science and Technology, 40, 771-777.   DOI
51 Whitney, P.R. (1975) Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments. Journal of Geochemical Exploration, 4, 251-263.   DOI
52 Yu, Q., Ohnuki, T., Kozai, N., Sakamoto, F., Tanaka, K., and Sasaki, K. (2017) Quantitative analysis of radiocesium retention onto birnessite and todorokite. Chemical Geology, 470, 141-151.   DOI
53 Bernal, J.D. and Fowler, R.H. (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics, 1, 515-548.   DOI
54 Allen, M.P. and Tildesley, D.J. (1989) Computer Simulation of Liquids. Oxford University Press, New York, 408p.
55 Atkins, A.L., Shaw, S., and Peacock, C.L. (2016) Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments. Geochimica et Cosmochimica Acta, 189, 158-183.   DOI
56 Babu, C.S. and Lim, C. (2006) Empirical force fields for biologically active divalent metal cations in water. The Journal of Physical Chemistry A, 110, 691-699.   DOI
57 Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P. (1987) The missing term in effective pair potentials. The Journal of Physical Chemistry, 91, 6269-6271.   DOI
58 Berendsen, H.J.C., Postma, J.P., van Gunsteren, W.F., and Hermans, J. (1981) Interaction models for water in relation to protein hydration. In: Pullman, B. (eds.), Intermolecular Forces, Reidel, Dordrecht, 331-342pp.
59 Bodeï, S., Manceau, A., Geoffroy, N., Baronnet, A., and Buatier, M. (2007) Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochimica et Cosmochimica Acta, 71, 5698-5716.   DOI
60 Burns, R.G. and Burns, V.M. (1977) The mineralogy and crystal chemistry of deep-sea manganese nodules, a polymetallic resource of the twenty-first century. Philosophical Transactions for the Royal Society of London A, 286, 283-301.   DOI
61 Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, New York, 288p.
62 Burns, V.M. and Burns, R.G. (1978) Post-depositional metal enrichment processes inside manganese nodules from the north equatorial Pacific. Earth and Planetary Science Letters, 39, 341-348.   DOI
63 Burns, R.G., Burns, V.M., and Stockman, H.W. (1985) The todorokite-buserite problem: Further considerations. American Mineralogist, 70, 205-208.
64 Byles, B.W., West, P., Cullen, D.A., More, K.L., and Pomerantseva, E. (2015) Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries. RSC Advances, 5, 106265-106271.   DOI