DOI QR코드

DOI QR Code

철 샘플에 따른 구리 함유 폐에칭액의 시멘테이션 반응에 대한 연구

A Study on the Cementation Reaction of Copper-containing Waste Etching Solution to the Shape of Iron Samples

  • 김보람 (고등기술연구원 신소재공정센터) ;
  • 장대환 (고등기술연구원 신소재공정센터) ;
  • 김대원 (고등기술연구원 신소재공정센터)
  • Kim, Bo-Ram (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Jang, Dae-Hwan (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Dae-Weon (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE))
  • 투고 : 2021.08.20
  • 심사 : 2021.09.07
  • 발행 : 2021.09.30

초록

COF (Chip on film)용 폐에칭용액 내 구리가 약 3.5% 함유되어 있으며, 철 시편을 사용한 시멘테이션을 통해 구리를 회수하고자 하였다. 철 시편 3종류(플레이트, 칩, 분말)에 따른 시멘테이션 반응에 미치는 영향을 조사하였으며, 구리의 회수율을 높이고자 구리에 대한 철의 몰 비를 변수로 하였다. 반응 전·후 용액 내 시간에 따른 구리 농도의 변화를 확인하였으며, 몰 비를 증가시킬수록 초기 용액 내 구리 함량이 급격히 줄어드는 경향이 나타났다. 상온에서 1시간의 시멘테이션 반응 후 철 시편의 비표면적 값이 큰 플레이트, 칩, 분말 순으로 구리의 회수율이 증가하였다. 회수된 분말은 X선 회절 분석기(X-ray diffraction, XRD), 주사전자현미경(scanning electron microscopy, SEM) 및 에너지 분산형 분광분석법(Energy-dispersive X-ray spectroscopy, EDM) 분석을 통해 결정상과 결정 형태를 확인하였으며, 철 분말의 경우에는 회수된 구리 분말에 미반응된 철 성분이 혼재하였다. 구리에 대한 철의 몰 비 4의 조건으로 철 칩을 사용하였을 때, 구리 회수율 약 98.4%로 최적 조건으로 달성하였다.

The waste etching solution for chip on film (COF) contained about 3.5% copper, and it was recovered through cementation using iron samples. The effect of cementation with plate, chip, and powder iron samples was investigated. The molar ratio (m/r) of iron to copper was used as a variable in order to increase the recovery rate of copper. As the molar ratio increased, the copper content in the solution rapidly decreased at the beginning of the cementation reaction. Before and after the reaction, the copper content of the solution was determined by Inductively Coupled Plasma (ICP) using copper concentration according to time. After cementation at room temperature for 1 hour, the recovery rate of copper had increased the most in the iron powder sample, having the largest specific surface area of the samples, followed by the chip and plate samples. The recovered copper powder was characterized for its crystalline phase, morphology, and elemental composition by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDS), respectively. Copper and unreacted iron were present together in the iron powder samples. The optimum condition for recovering copper was obtained using iron chips with a molar ratio of iron to copper of 4 giving a recovery rate of about 98.4%.

키워드

과제정보

본 연구는 2020년도 중소벤처기업부의 재원으로 중소기업기술정보진흥원(TIPA)의 지원을 받아 수행한 연구 과제입니다(중소기업기술혁신개발사업 No. S2962230).

참고문헌

  1. Yang, S. H., and Kim, Y., "Application of Ferrate (VI) for Selective Removal of Cyanide from Plated Wastewater," Clean Technol., 27(2), 168-173 (2021). https://doi.org/10.7464/KSCT.2021.27.2.168
  2. Chun, H. D., Roh, Y. M., Park, S. K., Kim, J. H., Shin, C. H., Kim, J. Y., and Ahn, J. W., "Separation of Nitric Acid and Acetic Acid from the Waste Acid in LCD Etching Process," Clean Technol., 14(2), 123-128 (2008).
  3. Kim, J. H., Lee, C. H., and Lee, C. H., "A Study on The Coagulation Characteristics of The Aluminium Etching Waste," Clean Technol., 10(1), 1-7 (2004).
  4. Xie, F., and Wang, W., "Recovery of Copper and Cyanide from Waste Cyanide Solutions Using Emulsion Liquid Membrane with LIX 7950 as the Carrier," Environ. Technol., 38(15), 1961-1968 (2017). https://doi.org/10.1080/09593330.2016.1242657
  5. Park, S. H., "Phosphoric Acid Recycling Technology of Waste Etchant Using Crystallization Process," Plant J., 5(2), 6-13 (2009).
  6. Mdlovu, N. V., Chiang, C. L., Lin, K. S., and Jeng, R. C., "Recycling Copper Nanoparticles from Printed Circuit Board Waste Etchants Via a Microemulsion Process," J. Clean Prod., 185, 781-796 (2018). https://doi.org/10.1016/j.jclepro.2018.03.087
  7. Cakir, O., "Copper Etching with Cupric Chloride and Regeneration of Waste Etchant," J. Mater. Process. Technol., 175(1-3), 63-68 (2006). https://doi.org/10.1016/j.jmatprotec.2005.04.024
  8. El-Nasr, R. S., Abdelbasir, S. M., Kamel, A. H., and Hassan, S. S., "Environmentally Friendly Synthesis of Copper Nanoparticles from Waste Printed Circuit Boards," Sep. Purif. Technol., 230, 115860 (2020). https://doi.org/10.1016/j.seppur.2019.115860
  9. Lee, S. H., Yoo, K., and Lee, J. C., "Preparation of Cu2O Powder in NaOH solution Using CuCl Obtained from Spent Printed Circuit Boards Etchant," JKSMER, 55(3), 194-199 (2018).
  10. Stefanowicz, T., Osinska, M., and Napieralska-Zagozda, S., "Copper Recovery by the Cementation Method," Hydrometallurgy, 47(1), 69-90 (1997). https://doi.org/10.1016/S0304-386X(97)00036-4
  11. Nam, S. W., Jang, K. S., and Youm, K. H., "Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (II): Dead-end Nanofiltration of PCB Etching Waste Solution Containing Copper Ion," Membr. J., 23(1), 92-99 (2013).
  12. Eltaweel, Y. A., Nassef, E. M., and Hazza, R. A., "Recovery of Copper from Wastewater by Cementation Technique," World Environment, 4(5), 199-205 (2014).
  13. Murr, L. E., and Annamalai, V., "An Electron Microscopic Study of Nucleation and Growth in Electrochemical Displacement Reactions: A Comparison of the Cu/Fe and Cu/AI Cementation Systems," Metallurgical Transactions B, 9(4), 515-525 (1978). https://doi.org/10.1007/BF03257198
  14. Jhajharia, R., Jain, D., Sengar, A., Goyal, A., and Soni, P. R., "Synthesis of copper powder by mechanically activated cementation," Powder Technol., 301, 10-15 (2016). https://doi.org/10.1016/j.powtec.2016.05.031