DOI QR코드

DOI QR Code

A Classical Molecular Dynamics Study of the Mg2+ Coordination in Todorokite

토도로카이트 내 Mg2+ 배위구조에 대한 고전분자동력학 연구

  • Kim, Juhyeok (Department of Geology, Kangwon National University) ;
  • Lee, Jin-Yong (Department of Geology, Kangwon National University) ;
  • Kwon, Kideok D. (Department of Geology, Kangwon National University)
  • 김주혁 (강원대학교 자연과학대학 지질학과) ;
  • 이진용 (강원대학교 자연과학대학 지질학과) ;
  • 권기덕 (강원대학교 자연과학대학 지질학과)
  • Received : 2019.07.19
  • Accepted : 2019.09.05
  • Published : 2019.09.30

Abstract

Todorokite, a tunnel-structured manganese oxide, can contain cations within the relatively large nanopores created by the $3{\times}3$ Mn octahedra. Because todorokite is poorly crystalline and found as aggregates mixed with other phases of Mn oxides in nature, the coordination structure of cations in the nanopores is challenging to fully characterize in experiment. In the current article, we report the atomistic coordination structures of $Mg^{2+}$ ions in todorokite tunnel nanopores using the classical molecular dynamics (MD) simulations. In experiment, $Mg^{2+}$ is known to occupy the center of the nanopores. In our MD simulations, 60 % of $Mg^{2+}$ ions were located at the center of the nanopores; 40 % of the ions were found at the corners. All $Mg^{2+}$ located at the center formed the six-fold coordination with water molecules, just as the ion in bulk aqueous solution. $Mg^{2+}$ ions at the corners also formed the six-fold coordination with not only water molecules but also Mn octahedral surface oxygens. The mean squared displacements were calculated to examine the dynamic features of $Mg^{2+}$ ions in the one-dimensional (1D) nanopores. Our MD simulations indicate that the dynamic features of water molecules and the cations observed in bulk aqueous solution are lost in the 1D nanopores of todorokite.

토도로카이트(todorokite)는 $3{\times}3$ 망간 팔면체로 이루어진 상대적으로 큰 나노공극(nanopore)을 가지는 터널구조의 산화망간광물로 나노공극에 다양한 양이온 함유가 가능하기 때문에 금속이온 거동에 큰 역할을 할 수 있다. 주로 결정도가 낮고 다른 산화망간광물들과 함께 집합체로 발견되어 나노 공극 내부 양이온의 배위(coordination)구조는 실험만으로 여전히 규명하기 매우 어렵다. 이번 논문에서는 고전분자동력학(classical molecular dynamics, MD) 시뮬레이션을 이용하여 토도로카이트 터널에 함유된 $Mg^{2+}$ 이온의 배위구조에 대한 연구결과를 처음으로 소개한다. 기존 실험에서는 토도로카이트 내부에 함유된 $Mg^{2+}$가 공극의 중앙에 우세하게 자리한다고 알려져 있다. MD 시뮬레이션 결과, $Mg^{2+}$ 이온의 약 60 %가 나노공극의 중앙에 위치하지만, 약 40 %의 $Mg^{2+}$는 광물의 표면에 해당하는 공극의 코너에 위치하였다. 공극 중앙의 $Mg^{2+}$는 수용액에서처럼 물 분자와 6배위수를 보였다. 공극 코너의 $Mg^{2+}$ 역시 6배위수를 보였는데, 물 분자 이외에도 망간 팔면체 표면 산소와 배위를 보였다. $Mg^{2+}$ 이온의 동적 거동을 파악하기 위해 계산한 평균 제곱 변위(mean squared displacement) 결과에서는, 수용액 벌크(bulk) 상태에서 갖는 물 분자와 양이온의 동적 성질이 토도로카이트 1D 나노공극에서는 유지되지 못하고 잃어버리는 것을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Allen, M.P. and Tildesley, D.J. (1989) Computer Simulation of Liquids. Oxford University Press, New York, 408p.
  2. Atkins, A.L., Shaw, S., and Peacock, C.L. (2016) Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments. Geochimica et Cosmochimica Acta, 189, 158-183. https://doi.org/10.1016/j.gca.2016.06.007
  3. Babu, C.S. and Lim, C. (2006) Empirical force fields for biologically active divalent metal cations in water. The Journal of Physical Chemistry A, 110, 691-699. https://doi.org/10.1021/jp054177x
  4. Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P. (1987) The missing term in effective pair potentials. The Journal of Physical Chemistry, 91, 6269-6271. https://doi.org/10.1021/j100308a038
  5. Berendsen, H.J.C., Postma, J.P., van Gunsteren, W.F., and Hermans, J. (1981) Interaction models for water in relation to protein hydration. In: Pullman, B. (eds.), Intermolecular Forces, Reidel, Dordrecht, 331-342pp.
  6. Bernal, J.D. and Fowler, R.H. (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics, 1, 515-548. https://doi.org/10.1063/1.1749327
  7. Bodeï, S., Manceau, A., Geoffroy, N., Baronnet, A., and Buatier, M. (2007) Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochimica et Cosmochimica Acta, 71, 5698-5716. https://doi.org/10.1016/j.gca.2007.07.020
  8. Burns, R.G. and Burns, V.M. (1977) The mineralogy and crystal chemistry of deep-sea manganese nodules, a polymetallic resource of the twenty-first century. Philosophical Transactions for the Royal Society of London A, 286, 283-301. https://doi.org/10.1098/rsta.1977.0118
  9. Burns, V.M. and Burns, R.G. (1978) Post-depositional metal enrichment processes inside manganese nodules from the north equatorial Pacific. Earth and Planetary Science Letters, 39, 341-348. https://doi.org/10.1016/0012-821X(78)90020-1
  10. Burns, R.G., Burns, V.M., and Stockman, H.W. (1985) The todorokite-buserite problem: Further considerations. American Mineralogist, 70, 205-208.
  11. Byles, B.W., West, P., Cullen, D.A., More, K.L., and Pomerantseva, E. (2015) Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries. RSC Advances, 5, 106265-106271. https://doi.org/10.1039/C5RA20624C
  12. Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, New York, 288p.
  13. Chitrakar, R., Makita, Y., and Sonoda, A. (2014) Cesium adsorption by synthetic todorokite-type manganese oxides. Bulletin of the Chemical Society of Japan, 87, 733-739. https://doi.org/10.1246/bcsj.20140017
  14. Cui, H., Feng, X., Tan, W., Zhao, W., Wang, M.K., Tsao, T.M., and Liu, F. (2010) Synthesis of a nanofibrous manganese oxide octahedral molecular sieve with Co $(NH_3)_6^^{3+}$ complex ions as a template via a reflux method. Crystal Growth and Design, 10, 3355-3362. https://doi.org/10.1021/cg900927j
  15. Cygan, R.T., Liang, J.J., and Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255-1266. https://doi.org/10.1021/jp0363287
  16. Duncan, M.J., Leroux, F., Corbett, J.M., and Nazar, L.F. (1998) Todorokite as a Li insertion cathode comparison of a large tunnel framework "$MnO_2$" structure with its related layered structures. Journal of the Electrochemical Society, 145, 3746-3757. https://doi.org/10.1149/1.1838869
  17. Dyer, A., Pillinger, M., Newton, J., Harjula, R., Moller, T., and Amin, S. (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chemistry of Materials, 12, 3798-3804. https://doi.org/10.1021/cm001142v
  18. Ewald, P.P. (1921) The computation of optical and electrostatic lattice potentials. Annalen der Physik, 64, 253-287. https://doi.org/10.1002/andp.19213690304
  19. Feng, Q., Kanoh, H., Miyai, Y., and Ooi, K. (1995) Metal ion extraction/insertion reactions with todor okite-type manganese oxide in the aqueous phase. Chemistry of Materials, 7, 1722-1727. https://doi.org/10.1021/cm00057a023
  20. Feng, X.H., Tan, W.F., Liu, F., Wang, J.B., and Ruan, H.D. (2004) Synthesis of todorokite at atmospheric pressure. Chemistry of Materials, 16, 4330-4336. https://doi.org/10.1021/cm0499545
  21. Frierdich, A.J., Hasenmueller, E.A., and Catalano, J.G. (2011) Composition and structure of nanocrystalline Fe and Mn oxide cave deposits: Implications for trace element mobility in karst systems. Chemical Geology, 284, 82-96. https://doi.org/10.1016/j.chemgeo.2011.02.009
  22. Gao, T., Shi, Y., Liu, F., Zhang, Y., Feng, X., Tan, W., and Qiu, G. (2015) Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems. Journal of Hazardous Materials, 290, 106-116. https://doi.org/10.1016/j.jhazmat.2015.02.018
  23. Ghodbane, O., Pascal, J.L., and Favier, F. (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Applied Materials and Interfaces, 1, 1130-1139. https://doi.org/10.1021/am900094e
  24. Goldberg, E.D. (1954) Marine geochemistry 1. Chemical scavengers of the sea. Journal of Geology, 62, 249-265. https://doi.org/10.1086/626161
  25. Golden, D.C., Chen, C.C., and Dixon, J.B. (1986) Synthesis of todorokite. Science, 231, 717-719. https://doi.org/10.1126/science.231.4739.717
  26. Gonzalez, M.A. (2011) Force fields and molecular dynamics simulations. ecole Thematique de la Societe Francaise de la Neutronique, 12, 169-200.
  27. Gutzmer, J. and Beukes, N.J. (2000) Asbestiform manjiroite and todorokite from the Kalahari manganese field, South Africa. South African Journal of Geology, 103, 163-174. https://doi.org/10.2113/1030163
  28. Halgren, T.A. (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: Potential form, combination rules, and vdW parameters. Journal of the American Chemical Society, 114, 7827-7843. https://doi.org/10.1021/ja00046a032
  29. Harris, K.R. and Woolf, L.A. (1980) Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water. Journal of the Chemical Society, Faraday Transactions 1, 76, 377-385. https://doi.org/10.1039/f19807600377
  30. Holz, M., Heil, S.R., and Sacco, A. (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Physical Chemistry Chemical Physics, 2, 4740-4742. https://doi.org/10.1039/b005319h
  31. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  32. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983) Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926-935. https://doi.org/10.1063/1.445869
  33. Julien, C. and Mauger, A. (2017) Nanostructured $MnO_2$ as electrode materials for energy storage. Nanomaterials, 7, 396. https://doi.org/10.3390/nano7110396
  34. Lind, C.J. and Hem, J.D. (1993) Manganese minerals and associated fine particulates in the streambed of Pinal Creek, Arizona, USA: A mining-related acid drainage problem. Applied Geochemistry, 8, 67-80. https://doi.org/10.1016/0883-2927(93)90057-N
  35. Luo, J., Zhang, Q., Huang, A., Giraldo, O., and Suib, S.L. (1999) Double-aging method for preparation of stabilized Na- buserite and transformations to todorokites incorporated with various metals. Inorganic Chemistry, 38, 6106-6113. https://doi.org/10.1021/ic980675r
  36. Manceau, A., Lanson, M., and Geoffroy, N. (2007) Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochimica et Cosmochimica Acta, 71, 95-128. https://doi.org/10.1016/j.gca.2006.08.036
  37. Mark, P. and Nilsson, L. (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105, 9954-9960. https://doi.org/10.1021/jp003020w
  38. McKenzie, R.M. (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine, 38, 493-502. https://doi.org/10.1180/minmag.1971.038.296.12
  39. McKeown, D.A. and Post, J.E. (2001) Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. American Mineralogist, 86, 701-713. https://doi.org/10.2138/am-2001-5-611
  40. Menard, H.W. and Shipek, C.J. (1958) Surface concentrations of manganese nodules. Nature, 182, 1156. https://doi.org/10.1038/1821156b0
  41. Mills, R. (1973) Self-diffusion in normal and heavy water in the range 1-45. deg. Journal of Physical Chemistry, 77, 685-688. https://doi.org/10.1021/j100624a025
  42. Müller-Plathe, F. (1994) Permeation of polymers - A computational approach. Acta Polymerica, 45, 259-293. https://doi.org/10.1002/actp.1994.010450401
  43. Newton, A.G. and Kwon, K.D. (2018) Molecular simulations of hydrated phyllomanganates. Geochimica et Cosmochimica Acta, 235, 208-223. https://doi.org/10.1016/j.gca.2018.05.021
  44. Nose, S. (1991) Constant temperature molecular dynamics methods. Progress of Theoretical Physics Supplement, 103, 1-46. https://doi.org/10.1143/PTPS.103.1
  45. Ohtaki, H. and Radnai, T. (1993) Structure and dynamics of hydrated ions. Chemical Reviews, 93, 1157-1204. https://doi.org/10.1021/cr00019a014
  46. Ostwald, J. (1986) Some observations on the chemical composition of todorokite. Mineralogical Magazine, 50, 336-340. https://doi.org/10.1180/minmag.1986.050.356.25
  47. Outram, J.G., Couperthwaite, S.J., and Millar, G.J. (2018) Enhanced removal of high Mn(II) and minor heavy metals from acid mine drainage using tunnelled manganese oxides. Journal of Environmental Chemical Engineering, 6, 3249-3261. https://doi.org/10.1016/j.jece.2018.04.063
  48. Plimpton, S.J. (1995) Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
  49. Post, J.E. and Bish, D.L. (1988) Rietveld refinement of the todorokite structure. American Mineralogist, 73, 861-869.
  50. Post, J.E., Heaney, P.J., and Hanson, J. (2003) Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. American Mineralogist, 88, 142-150. https://doi.org/10.2138/am-2003-0117
  51. Riddick, J.A., Bunger, W.B., and Sakano, T.K. (1986) Organic Solvents: Physical Properties and Methods of Purification. John Wiley and Sons, New York, 1344p.
  52. Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J. (1977) Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327-341. https://doi.org/10.1016/0021-9991(77)90098-5
  53. Shen, Y.F., Suib, S.L., and O'Young, C.L. (1994) Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. Journal of the American Chemical Society, 116, 11020-11029. https://doi.org/10.1021/ja00103a018
  54. Shen, Y.F., Zerger, R.P., DeGuzman, R.N., Suib, S.L., McCurdy, L., Potter, D.I., and O'young, C.L. (1993) Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science, 260, 511-515. https://doi.org/10.1126/science.260.5107.511
  55. Soper, A.K., and Phillips, M.G. (1986) A new determination of the structure of water at $25^{\circ}C$. Chemical Physics, 107, 47-60. https://doi.org/10.1016/0301-0104(86)85058-3
  56. Svishchev, I.M. and Kusalik, P.G. (1994) Dynamics in liquid $H_2O$, $D_2O$, and $T_2O$: A comparative simulation study. Journal of Physical Chemistry, 98, 728-733. https://doi.org/10.1021/j100054a002
  57. Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K., and Soma, M. (2004) Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21-2. Environmental Science and Technology, 38, 6618-6624. https://doi.org/10.1021/es049226i
  58. Tian, Z.R., Xia, G., Luo, J., Suib, S.L., and Navrotsky, A. (2000) Effects of water, cations, and structure on energetics of layer and framework phases, NaxMgy $MnO_2{\cdot}nH_2O$. Journal of Physical Chemistry B, 104, 5035-5039. https://doi.org/10.1021/jp9939219
  59. Toner, B., Manceau, A., Webb, S.M., and Sposito, G. (2006) Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochimica et Cosmochimica Acta, 70, 27-43. https://doi.org/10.1016/j.gca.2005.08.029
  60. van der Spoel, D., van Maaren, P.J., and Berendsen, H.J. (1998) A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. Journal of Chemical Physics, 108, 10220-10230. https://doi.org/10.1063/1.476482
  61. Verlet, L. (1967) Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159, 98-103. https://doi.org/10.1103/PhysRev.159.98
  62. Webb, S.M., Fuller, C.C., Tebo, B.M., and Bargar, J.R. (2006) Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering. Environmental Science and Technology, 40, 771-777. https://doi.org/10.1021/es051679f
  63. Whitney, P.R. (1975) Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments. Journal of Geochemical Exploration, 4, 251-263. https://doi.org/10.1016/0375-6742(75)90005-9
  64. Yu, Q., Ohnuki, T., Kozai, N., Sakamoto, F., Tanaka, K., and Sasaki, K. (2017) Quantitative analysis of radiocesium retention onto birnessite and todorokite. Chemical Geology, 470, 141-151. https://doi.org/10.1016/j.chemgeo.2017.09.008

Cited by

  1. 란시아이트-다카네라이트 고용체 결정구조에 대한 분자동역학 시뮬레이션 연구 vol.33, pp.1, 2019, https://doi.org/10.22807/kjmp.2020.33.1.19