• Title/Summary/Keyword: strongly AB-rings

Search Result 9, Processing Time 0.02 seconds

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.

ON ANNIHILATIONS OF IDEALS IN SKEW MONOID RINGS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.381-401
    • /
    • 2016
  • According to Jacobson [31], a right ideal is bounded if it contains a non-zero ideal, and Faith [15] called a ring strongly right bounded if every non-zero right ideal is bounded. From [30], a ring is strongly right AB if every non-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property (A) and the conditions asked by Nielsen [42]. It is shown that for a u.p.-monoid M and ${\sigma}:M{\rightarrow}End(R)$ a compatible monoid homomorphism, if R is reversible, then the skew monoid ring R * M is strongly right AB. If R is a strongly right AB ring, M is a u.p.-monoid and ${\sigma}:M{\rightarrow}End(R)$ is a weakly rigid monoid homomorphism, then the skew monoid ring R * M has right Property (A).

ON STRONGLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Almahdi, Fuad Ali Ahmed;Bouba, El Mehdi;Koam, Ali N.A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1205-1213
    • /
    • 2020
  • Let R be a commutative ring with 1 ≠ 0. In this paper, we introduce a subclass of the class of 1-absorbing primary ideals called the class of strongly 1-absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈ ${\sqrt{0}}$. Firstly, we investigate basic properties of strongly 1-absorbing primary ideals. Hence, we use strongly 1-absorbing primary ideals to characterize rings with exactly one prime ideal (the UN-rings) and local rings with exactly one non maximal prime ideal. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the prime ideals, the primary ideals and the 1-absorbing primary ideals. In the end of this paper, we give an idea about some strongly 1-absorbing primary ideals of the quotient rings, the polynomial rings, and the power series rings.

ON STRONGLY QUASI J-IDEALS OF COMMUTATIVE RINGS

  • El Mehdi Bouba;Yassine EL-Khabchi;Mohammed Tamekkante
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.93-104
    • /
    • 2024
  • Let R be a commutative ring with identity. In this paper, we introduce a new class of ideals called the class of strongly quasi J-ideals lying properly between the class of J-ideals and the class of quasi J-ideals. A proper ideal I of R is called a strongly quasi J-ideal if, whenever a, b ∈ R and ab ∈ I, then a2 ∈ I or b ∈ Jac(R). Firstly, we investigate some basic properties of strongly quasi J-ideals. Hence, we give the necessary and sufficient conditions for a ring R to contain a strongly quasi J-ideals. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the primary ideals, the prime ideals and the maximal ideals. Finally, we give an idea about some strongly quasi J-ideals of the quotient rings, the localization of rings, the polynomial rings and the trivial rings extensions.

Weakly Semicommutative Rings and Strongly Regular Rings

  • Wang, Long;Wei, Junchao
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • A ring R is called weakly semicommutative ring if for any a, $b{\in}R^*$ = R\{0} with ab = 0, there exists $n{\geq}1$ such that either an $a^n{\neq}0$ and $a^nRb=0$ or $b^n{\neq}0$ and $aRb^n=0$. In this paper, many properties of weakly semicommutative rings are introduced, some known results are extended. Especially, we show that a ring R is a strongly regular ring if and only if R is a left SF-ring and weakly semicommutative ring.

On Representable Rings and Modules

  • Mousavi, Seyed Ali;Mirzaei, Fatemeh;Nekooei, Reza
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.407-423
    • /
    • 2022
  • In this paper, we determine the structure of rings that have secondary representation (called representable rings) and give some characterizations of these rings. Also, we characterize Artinian rings in terms of representable rings. Then we introduce completely representable modules, modules every non-zero submodule of which have secondary representation, and give some necessary and sufficient conditions for a module to be completely representable. Finally, we define strongly representable modules and give some conditions under which representable module is strongly representable.

ON CONDITIONS PROVIDED BY NILRADICALS

  • Kim, Hong-Kee;Kim, Nam-Kyun;Jeong, Mun-Seob;Lee, Yang;Ryu, Sung-Ju;Yeo, Dong-Eun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1027-1040
    • /
    • 2009
  • A ring R is called IFP, due to Bell, if ab = 0 implies aRb = 0 for a, b $\in$ R. Huh et al. showed that the IFP condition is not preserved by polynomial ring extensions. In this note we concentrate on a generalized condition of the IFPness that can be lifted up to polynomial rings, introducing the concept of quasi-IFP rings. The structure of quasi-IFP rings will be studied, characterizing quasi-IFP rings via minimal strongly prime ideals. The connections between quasi-IFP rings and related concepts are also observed in various situations, constructing necessary examples in the process. The structure of minimal noncommutative (quasi-)IFP rings is also observed.

ON STRONGLY QUASI PRIMARY IDEALS

  • Koc, Suat;Tekir, Unsal;Ulucak, Gulsen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.729-743
    • /
    • 2019
  • In this paper, we introduce strongly quasi primary ideals which is an intermediate class of primary ideals and quasi primary ideals. Let R be a commutative ring with nonzero identity and Q a proper ideal of R. Then Q is called strongly quasi primary if $ab{\in}Q$ for $a,b{\in}R$ implies either $a^2{\in}Q$ or $b^n{\in}Q$ ($a^n{\in}Q$ or $b^2{\in}Q$) for some $n{\in}{\mathbb{N}}$. We give many properties of strongly quasi primary ideals and investigate the relations between strongly quasi primary ideals and other classical ideals such as primary, 2-prime and quasi primary ideals. Among other results, we give a characterization of divided rings in terms of strongly quasi primary ideals. Also, we construct a subgraph of ideal based zero divisor graph ${\Gamma}_I(R)$ and denote it by ${\Gamma}^*_I(R)$, where I is an ideal of R. We investigate the relations between ${\Gamma}^*_I(R)$ and ${\Gamma}_I(R)$. Further, we use strongly quasi primary ideals and ${\Gamma}^*_I(R)$ to characterize von Neumann regular rings.

ON IDEMPOTENTS IN RELATION WITH REGULARITY

  • HAN, JUNCHEOL;LEE, YANG;PARK, SANGWON;SUNG, HYO JIN;YUN, SANG JO
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.217-232
    • /
    • 2016
  • We make a study of two generalizations of regular rings, concentrating our attention on the structure of idempotents. A ring R is said to be right attaching-idempotent if for $a{\in}R$ there exists $0{\neq}b{\in}R$ such that ab is an idempotent. Next R is said to be generalized regular if for $0{\neq}a{\in}R$ there exist nonzero $b{\in}R$ such that ab is a nonzero idempotent. It is first checked that generalized regular is left-right symmetric but right attaching-idempotent is not. The generalized regularity is shown to be a Morita invariant property. More structural properties of these two concepts are also investigated.