ON IDEMPOTENTS IN RELATION WITH REGULARITY |
HAN, JUNCHEOL
(DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY)
LEE, YANG (DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY) PARK, SANGWON (DEPARTMENT OF MATHEMATICS DONG-A UNIVERSITY) SUNG, HYO JIN (DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY) YUN, SANG JO (DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY) |
1 | A. Badawi, On semicommutative -regular rings, Comm. Algebra 22 (1994), no. 1, 151-157. DOI |
2 | J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. DOI |
3 | K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979. |
4 | M. Henriksen, On a class of regular rings that are elementary divisor ring, Arch. Math. 24 (1973), 133-141. DOI |
5 | C. Huh, N. K. Kim, and Y. Lee, Examples of strongly -regular rings, J. Pure Appl. Algebra 189 (2004), no. 1-3, 195-210. DOI |
6 | C. Huh, Y. Lee, and A. Somktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. DOI |
7 | N. Jacobson, Some remarks on one-sided inverses, Proc. Amer. Math. Soc. 1 (1950), 352-355. |
8 | J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, Singapore, 1987. |
9 | W. K. Nicholson, I- rings, Trans. Amer. Math. Soc. 207 (1975), 361-373. |
10 | G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. DOI |