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ON STRONGLY 1-ABSORBING PRIMARY IDEALS OF

COMMUTATIVE RINGS

Fuad Ali Ahmed Almahdi, El Mehdi Bouba, and Ali N. A. Koam

Abstract. Let R be a commutative ring with 1 6= 0. In this paper, we

introduce a subclass of the class of 1-absorbing primary ideals called the
class of strongly 1-absorbing primary ideals. A proper ideal I of R is called

strongly 1-absorbing primary if whenever nonunit elements a, b, c ∈ R and
abc ∈ I, then ab ∈ I or c ∈

√
0. Firstly, we investigate basic properties of

strongly 1-absorbing primary ideals. Hence, we use strongly 1-absorbing

primary ideals to characterize rings with exactly one prime ideal (the
UN -rings) and local rings with exactly one non maximal prime ideal.

Many other results are given to disclose the relations between this new

concept and others that already exist. Namely, the prime ideals, the
primary ideals and the 1-absorbing primary ideals. In the end of this

paper, we give an idea about some strongly 1-absorbing primary ideals of

the quotient rings, the polynomial rings, and the power series rings.

1. Introduction

Throughout this paper all rings are commutative with 1 6= 0. An ideal I of
a ring R is said to be proper if I 6= R. Let R be a ring and I be an ideal of R.
Then,

√
0 denotes the nilradical of R and

√
I denotes the radical of I.

Recall that an ideal q of a ring R is said to be primary if, whenever a, b ∈ R
with ab ∈ q, then a ∈ q or b ∈ √q. In this case p =

√
q is a prime ideal of

R, and q is said to be p-primary. In [2], Badawi, Tekir and Yetkin introduced
a generalization of primary ideals called 2-absorbing primary ideals. A proper
ideal I of R is called a 2-absorbing primary ideal of R if whenever a, b, c ∈ R
and abc ∈ I, then ab ∈ I or ac ∈

√
I or bc ∈

√
I. The concept of 2-absorbing

primary ideals is generalized in many ways (see for example [1, 3]). Recently,
Badawi and Yetkin [4] consider an new class of ideals called the class of 1-
absorbing primary ideals. A proper ideal I of R is called a 1-absorbing primary
ideal of R if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or
c ∈
√
I. They showed that

{primary ideals} ⊆ {1-absorbing primary ideals} ⊆ {2-absorbing primary ideals},
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and these inclusion may be strict.
In this paper, we study a subclass of the class of 1-absorbing primary ideals

that does not necessarily contain all primary ideals. Let R be a ring. A proper
ideal I of R is called strongly 1-absorbing primary if whenever nonunit elements
a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈

√
0. Firstly, we investigate basic

properties of strongly 1-absorbing primary ideals. Hence, we use strongly 1-
absorbing primary ideals to characterize rings with exactly one prime ideal (the
UN -rings) and local rings with exactly one non maximal prime ideal. Many
other results are given to disclose the relations between this new concept and
others that already exist. Namely, the prime ideals, the primary ideals and the
1-absorbing primary ideals. In the end of this paper, we give an idea about
some strongly 1-absorbing primary ideals of the quotient rings, the polynomial
rings, and the power series rings.

2. Strongly 1-absorbing primary ideals of commutative rings

Definition. A proper ideal I of R is called strongly 1-absorbing primary if
whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈

√
0.

Clearly, every strongly 1-absorbing primary ideal is a 1-absorbing primary
ideal. However, the next example shows that these are different concepts. The
same example shows that a prime ideal (in particular a primary ideal) is not
necessarily a strongly 1-absorbing primary ideal.

Example 2.1. Let R = Z and I = 3Z. It is clear that I is prime, and then 1-
absorbing primary. However, I is not a strongly 1-absorbing primary. Indeed,
2 · 2 · 3 ∈ I but neither 2 · 2 ∈ I nor 3 ∈

√
0 = {0}.

Our first theorem gives a characterization of strongly 1-absorbing primary
ideals.

Theorem 2.2. Let I be a proper ideal of R. Then, I is strongly 1-absorbing
primary if and only if

(1) I is 1-absorbing primary and
√
I =
√

0, or

(2) R is local with maximal ideal m =
√
I and m2 ⊆ I.

Proof. (⇒) It is obvious that every strongly 1-absorbing primary ideal is 1-
absorbing primary.

Suppose that
√
I 6=
√

0. Assume that there exist nonunit elements x, y ∈ R
such that xy 6∈ I. For each a ∈ I, we have xya ∈ I, and then a ∈

√
0 since

I is a strongly 1-absorbing primary. Hence, I ⊆
√

0. Then,
√
I =

√
0, a

contradiction. Hence, xy ∈ I for each nonunit elements x, y ∈ R. Let m be
a maximal ideal of R. We have m2 ⊆ I, and then m =

√
m2 ⊆

√
I. Thus,

m =
√
I for each maximal ideal m of R. Hence, we conclude that R is local

with maximal ideal m =
√
I and m2 ⊆ I.
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(⇐) If (1) holds, then I is clearly a strongly 1-absorbing primary ideal of
R. Now, suppose that (2) holds. Then, for each nonunit elements x, y ∈ R,
xy ∈ m2 ⊆ I. Then, I is trivially a strongly 1-absorbing primary ideal of R. �

Remark 2.3. (1) Note that if R is non local, then 1-absorbing ideals co-
incide with primary ideals [4, Theorem 3]. Hence, if R is non local

with
√

0 prime, then the class of strongly 1-absorbing primary ideals
coincide with the class of

√
0-primary ideals of R.

(2) Let R be a local ring. If I is a strongly 1-absorbing primary ideal of R,

then
√
I needs not to be maximal. To see that, it suffices to consider

any local domain which is not a field. Then, (0) =
√

0 is a strongly
1-absorbing primary which is not maximal.

We deduce a characterization of strongly 1-absorbing primary prime ideals.

Corollary 2.4. Let p be a prime ideal of R. Then, p is a strongly 1-absorbing
primary if and only if

(1) p =
√

0, or
(2) R is local with maximal ideal p.

Corollary 2.5. Let (R,m) be a local ring and p be a prime ideal of R. Then,

pm is a strongly 1-absorbing primary ideal of R if and only if p =
√

0 or p = m.

Proof. Note first that pm is a 1-absorbing primary ideal of R ([4, Theorem 7]).
Hence, using Theorem 2.2, pm is a strongly 1-absorbing primary ideal of R if
and only if p =

√
pm =

√
0 or p =

√
pm = m and m2 ⊆ pm. Hence, we have

the desired result. �

The next result characterizes rings admitting strongly 1-absorbing primary
ideals.

Theorem 2.6. Let R be a ring. Then, there exists a strongly 1-absorbing
primary ideal of R if and only if

√
0 is prime or R is local

Proof. (⇒) Suppose that R contains a strongly 1-absorbing primary I. If R

is not local, then by Theorem 2.2,
√
I =
√

0. Now, by [4, Theorem 2],
√
I is

prime since I is 1-absorbing primary. Thus,
√

0 is prime.
(⇐) Following Corollary 2.4, if (R,m) is local, then m is a strongly 1-

absorbing primary ideal, and if p =
√

0 is prime, then it is a strongly 1-
absorbing primary ideal. �

Corollary 2.7. Let n ≥ 2 be an integer. Then, Z/nZ has a strongly 1-
absorbing primary ideal if and only if n = pk where p is a prime number
and k is a positive integer.

Proof. Following Theorem 2.6, Z/nZ has a strongly 1-absorbing primary ideal

if and only if and only if it is local or
√

0 is prime. On the other hand, Z/nZ is
artinian, and then Z/nZ local if and only it is a field; that is n is prime. Now,
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if m = pn1
1 · · · pnr

r is the primary decomposition of n, then
√

0 = p1 · · · prZ/nZ.

Hence,
√

0 is prime if and only if r = 1. �

Corollary 2.8. Let R1 and R2 be two rings. Then, R1 × R2 has no strongly
1-absorbing primary ideal.

Proof. This is because R1 × R2 is not local and
√

0R1×R2
=
√

0R1
×
√

0R2
is

never prime in R1 ×R2. �

Proposition 2.9. Let I be a proper ideal of R. Then, I is a strongly 1-
absorbing primary ideal of R if and only if whenever I1I2I3 ⊆ I for some
proper ideals I1, I2, and I3 of R, then I1I2 ⊆ I or I3 ⊆

√
0.

Proof. (⇒) Suppose that I1I2 6⊆ I. Then, there exist x ∈ I1 and y ∈ I2 such

that xy 6∈ I. For each z ∈ I3, we have xyz ∈ I, and then z ∈
√

0. Hence,
I3 ⊆

√
0.

(⇐) Let nonunit elements a, b, c ∈ R with abc ∈ I and set I1 = (a), I2 = (b),

and I3 = (c). Then, by hypothesis, ab ∈ I or c ∈
√

0. Hence, I is a strongly
1-absorbing primary ideal. �

Proposition 2.10. Let R be a ring and I and J be two proper ideals of R. If
I and J are strongly 1-absorbing primary, then so is I ∩ J .

Proof. It is clear. �

Recall from [6], that a ring R is said to be an UN -ring if every nonunit
element a of R is a product a unit and a nilpotent elements, or equivalently
every element of R is either nilpotent or unit ([7, Proposition 2.25]). A simple
example of UN -rings is Z/9Z.

Proposition 2.11. For any ring R, the followings are equivalent:

(1) R is a UN -ring.
(2) Every proper principal ideal is strongly 1-absorbing primary.
(3) Every proper ideal is strongly 1-absorbing primary.

(4)
√

0 is a maximal ideal of R.

Proof. (1) ⇒ (2) Let x be a nonunit element of R, and consider nonunit ele-

ments a, b, c ∈ R with abc ∈ (x). Then, c ∈
√

0 (since it is a nonunit element
and R is UN). Hence, (x) is a strongly 1-absorbing primary ideal of R.

(2)⇒ (3) Let I be a proper ideal of R. Consider nonunit elements a, b, c ∈ R
with abc ∈ I and c 6∈

√
0. We have abc ∈ (abc) and (abc) is strongly 1-absorbing

primary. Then, ab ∈ (abc) ⊆ I. Hence, I is a strongly 1-absorbing primary
ideal of R.

(3) ⇒ (4) Suppose that R is non local and let m1 and m2 be two different

maximal ideals of R. Using Theorem 2.2 we get m1 =
√

0 = m2, a contradiction.
Hence, R is local with maximal ideal m. Let p be a prime ideal. By Corollary
2.4, p =

√
0 or p = m. Hence,

√
0 and m are the only prime ideals of R. We

claim that
√

0 = m. Suppose that
√

0 6= m. Hence, m2 6⊆
√

0. Let x ∈ m2 \
√

0.
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Since xR is a strongly 1-absorbing primary ideal and
√
xR 6=

√
0, we obtain

that m2 ⊆ xR (by Theorem 2.2). Then, m2 = xR. On the other hand, m3 is

a strongly 1-absorbing primary ideal with
√
m3 = m 6=

√
0. Hence, m2 ⊆ m3.

Thus, m2 = m3 = m.m2 = m.m3 = m4. Thus, x = x2r for some r ∈ R. Thus,
x(1 − xr) = 0. But 1 − xr 6∈ m. Thus, 1 − xr is a unit, and then x = 0, a

contradiction since x 6∈
√

0. Consequently,
√

0 = m, as desired.
(4)⇒ (1) It is clear. �

Proposition 2.12. For any ring R, the followings are equivalent:

(1) Every prime ideal of R is strongly 1-absorbing primary.
(2) R is local and has at most one non maximal prime ideal.

Proof. (⇒) Suppose that R is not local and let p be a prime ideal of R. Then,

since p is strongly 1-absorbing primary, we get
√

0 = p (by Corollary 2.4).

Hence,
√

0 is the only prime ideal of R. Thus, R is local, a contradiction.
Hence, R is local with maximal ideal m. Now let p be a prime ideal which is
not maximal (if there exist). Then,

√
p =
√

0. Hence, R has at most two prime

ideals
√

0 and m.
(⇐) If R is a UN -ring the result is trivial. Otherwise, R has exactly two

prime ideals p  m. Since
√

0 is the intersection of prime ideals, we get that√
0 = p. It is clear that both of

√
0 and m are strongly 1-absorbing primary

ideals. Hence, we have the desired result. �

Remark 2.13. Examples of local rings having one non maximal prime ideal are
discrete valuation rings. An easy example of such rings is

Z(p) =
{a
b
| a, b ∈ Z, p - b

}
for any prime integer p.

Proposition 2.14. Let R be a ring. Then, every primary ideal of R is strongly
1-absorbing primary if and only if

(1) R is a UN -ring or
(2) R is local with maximal ideal m, one non maximal prime ideal (which

is
√

0), and every m-primary ideal contains m2.

Proof. (⇒) If R is not a UN -ring, then, by Proposition 2.12, R is local with

exactly tow prime ideals which are
√

0 and m (the maximal ideal). Now, let p

be an m-primary ideal of R. Then, since
√

0 6= √p = m, we have necessarily
m2 ⊆ p (by Theorem 2.2).

(⇐) If R is a UN -ring the result follows trivially. Hence, suppose that (2)

holds. Let p be a primary ideal. Then,
√
p =

√
0 or

√
p = m. If

√
p =

√
0

then, by Theorem 2.2, p is strongly 1-absorbing primary since every primary
is 1-absorbing primary. Now, if

√
p = m, then also p is strongly 1-absorbing

primary since m2 ⊆ p. �

Corollary 2.15. For any Noetherian ring R, the following are equivalent:
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(1) Every primary ideal of R is strongly 1-absorbing primary.
(2) R is a UN -ring.

Proof. (1) ⇒ (2) If R is not a UN -ring then, following Proposition 2.14, R is
local with maximal ideal m and every m-primary contains m2. Hence, since m4

is m-primary, we have m2 ⊆ m4. Thus, m2 = m4. Hence, m2 is an idempotent
ideal. Now, since R is Noetherian, m2 is generated by an idempotent element
of R. But R is local and so the only idempotent elements are 0 and 1. Hence,
m2 = (0). Consequently, m2 ⊆

√
0. Then, m =

√
0, and so R is a UN -ring, a

contradiction. Hence, R is a UN -ring. �

Proposition 2.16. Let R be a Noetherian ring. Then, R is a UN -ring if and
only if mk is a strongly 1-absorbing primary ideal for some maximal ideal m
and some integer k ≥ 3.

Proof. (⇒) It is clear.
(⇐) Suppose that there exist a maximal ideal m and an integer k ≥ 3 such

that mk is a strongly 1-absorbing primary ideal. If m =
√
mk =

√
0, then R

is UN , as desired. Now, suppose that m 6=
√

0. Then, (R,m) is local and
m2 ⊆ mk. Thus, m2 = mk. If k = 3, then m2 = m3 = m.m2 = m4. Hence,
m2 is an idempotent ideal. We obtain the same thing if k = 4. Now, if k > 4,
then mk−2 = mk−4m2 = m2k−4. Thus, mk−2 is an idempotent ideal. Then,
there is always some integer n such that mn is an idempotent ideal. Since R
is Noetherian, mn is generated by an idempotent element of R. But R is local
and so the only idempotent elements are 0 and 1. Thus, mn = (0). Hence,

m ⊆
√

0, a contradiction. �

Proposition 2.17. Let R be a ring. Then, (0) is the only strongly 1-absorbing
primary ideal of R if and only if R is a field or a non local domain.

Proof. (⇒) If R is local with maximal ideal m, then m = (0) since m is a
strongly 1-absorbing primary ideal of R. Hence, R is a field. Now, if R is non
local, then

√
0 = (0) is prime since

√
0 is a strongly 1-absorbing primary ideal.

Thus, R is a domain.
(⇐) Clear. �

Lemma 2.18. Let I be a 1-absorbing primary ideal of R and J 6⊆ I a proper
ideal of R. Then, (I : J) is primary.

Proof. Note (I : J) is a proper ideal of R since J 6⊆ I. Let a, b ∈ R with
ab ∈ (I : J) and a 6∈ (I : J). Clearly, b is a nonunit element. If a is unit,

then b ∈ (I : J) ⊆
√

(I : J). Hence, we may assume that a and b are nonunit
elements of R. Since a 6∈ (I : J), there is c ∈ J such that ac 6∈ I. But abc ∈ I
and I is 1-absorbing primary. Then, b ∈

√
I ⊆

√
(I : J). Thus, (I : J) is

primary. �
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Proposition 2.19. Let I be a strongly 1-absorbing primary ideal of R and
J 6⊆

√
I a proper ideal of R. Then, (I : J) is a strongly 1-absorbing primary

ideal of R.

Proof. If
√
I 6=
√

0, then R is local with maximal ideal
√
I. In this situation,

our assumption J 6⊆
√
I is not satisfied. Then, we must have that

√
I =
√

0 is
prime. Let x ∈ (I : J). Then, xJ ⊆ I ⊆

√
I. Since J 6⊆

√
I, we get x ∈

√
I.

Hence, I ⊆ (I : J) ⊆
√
I. Thus,

√
(I : J) =

√
I =
√

0. Now, the result follows
from Theorem 2.2 and Lemma 2.18. �

3. Strongly 1-absorbing primary ideals and change of ring

Proposition 3.1. Let f : R→ S be a ring homomorphism. Then, the follow-
ings hold:

(1) If f is an epimorphism and I is a strongly 1-absorbing primary ideal of
R containing ker(f), then f(I) is a strongly 1-absorbing primary ideal
of S.

(2) If f is a monomorphism and J is a strongly 1-absorbing primary ideal
of S, then f−1(J) is a strongly 1-absorbing primary ideal of R.

Proof. (1) Let x, y, z ∈ S be nonunit elements such that xyz ∈ f(I). Since f
is an epimorphism, there exist nonunit elements a, b, c ∈ R such that x = f(a),
y = f(b), and z = f(c). Suppose that xy 6∈ f(I). Then, ab 6∈ I. Hence, since I
is a strongly 1-absorbing primary ideal of R and abc ∈ I (because ker(f) ⊆ I),
we get that c ∈

√
0R. Thus, z = f(c) ∈

√
0S . Consequently, f(I) is a strongly

1-absorbing primary ideal of S.
(2) Let x, y, z ∈ R be nonunit elements such that xyz ∈ f−1(J). Suppose

that xy 6∈ f−1(J). Then, f(x)f(y) 6∈ J . Hence, since J is a strongly 1-
absorbing primary ideal of S and f(x)f(y)f(z) ∈ J , we conclude that f(z) ∈√

0S . Thus, since f is a monomorphism, z ∈
√

0R. Consequently, f−1(J) is a
strongly 1-absorbing primary ideal of R. �

Corollary 3.2. (1) Let J ⊆ I be two proper ideals of a ring R. If I is
a strongly 1-absorbing primary ideal of R, then I/J is a strongly 1-
absorbing primary ideal of R/J .

(2) Let S be a sub-ring of a ring R. If J is a strongly 1-absorbing primary
ideal of R, then J ∩ S is a strongly 1-absorbing primary ideal of S.

Proof. Follows by applying Proposition 3.1 to the canonical surjection π : R→
R/J and to the natural injection ι : S ↪→ R, respectively. �

Proposition 3.3. Let R be a ring and S be a multiplicatively closed subset of
R such that I ∩S = ∅. Then, if I is a strongly 1-absorbing primary ideal of R,
then S−1I is a strongly 1-absorbing primary ideal of S−1R.

In particular, if I is a strongly 1-absorbing primary ideal of R and m is a
maximal ideal of R, then Im is a strongly 1-absorbing primary ideal of Rm.
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Proof. Since I ∩S = ∅, S−1I is a proper ideal of S−1R. Let a
s1

b
s2

c
s3
∈ S−1I for

some nonunit elements a, b, c ∈ R and s1, s2, s3 ∈ S. Then, there is u ∈ S such
that uabc ∈ I. Suppose that a

s1
b
s2
6∈ S−1I. Then, uab 6∈ I. Hence, c ∈

√
0R

since I is a strongly 1-absorbing primary ideal of R. Thus, c
s3
∈ S−1

√
0R =√

0S−1R.
To end the proof, if suffices to prove that in the particular case S = R \ m

we have S∩ I = ∅. Seen Theorem 2.2, it is easy to see that I ⊆ rad(R). Hence,
for S ∩ I ⊆ (R \m) ∩m = ∅. �

Proposition 3.4. Let R be a ring and I be a proper ideal of R.

(1) R[X] has a strongly 1-absorbing primary ideal if and only if
√

0R is a
prime ideal of R.

(2) If I[X] is a strongly 1-absorbing primary ideal of R[X], then I is a
strongly 1-absorbing primary ideal of R.

(3) The ideal I + XR[X] is never a strongly 1-absorbing primary ideal of
R[X].

(4) I[X] is a strongly 1-absorbing primary ideal of R[X] if and only if I[X]

is primary and
√
I =
√

0.

Proof. (1) From Theorem 2.6, R[X] has a strongly 1-absorbing primary ideal
if and only if

√
0R[X] is prime (since R[X] is never local). Moreover,

√
0R[X] =

(
√

0R)[X], and (
√

0R)[X] is a prime ideal of R[X] if and only
√

0R is a prime
ideal of R.

(2) If I[X] is a strongly 1-absorbing primary ideal of R[X], then, by Corollary
3.2, I = I[X] ∩R is a strongly 1-absorbing primary ideal of R.

(3) Since R[X] is not local and I+XR[X] 6⊆
√

0R[X] (because X 6∈
√

0R[X]),

I +XR[X] is never a strongly 1-absorbing primary ideal of R[X].
(4) Since R[X] is not local, I[X] is a strongly 1-absorbing primary ideal

of R[X] if and only if I[X] is
√

0R[X]-primary if and only if I[X] is primary

and
√

0R[X] =
√

0R[X] =
√
I[X] =

√
I[X] if and only if I[X] is primary and√

0 =
√
I �

Proposition 3.5. Let I be a proper ideal of a ring R. Then, I +XR[[X]] is a

strongly 1-absorbing primary ideal of R[[X]] if and only if (R,
√
I) is local with

(
√
I)2 ⊆ I.
In particular, XR[[X]] is a strongly 1-absorbing primary ideal of R[[X]] if

and only if R is a UN -ring with (
√

0)2 = {0}.

Proof. (⇒) By Corollary 3.2, I = (I +XR[[X]]) ∩R is a strongly 1-absorbing

primary ideal of R. We have that X 6∈
√

0R[[X]], and then
√
I +XR[[X]] 6=√

0R[[X]]. Then, R[[X]] must be local with maximal ideal
√
I +XR[[X]] =√

I + XR[[X]]. Now, by [5, Theorem 2], R is local with maximal ideal
√
I.

Moreover, (
√
I+XR[[X]])2 ⊆ (

√
I)2+XR[[X]] ⊆ I+XR[[X]]. Then,

√
I
2 ⊆ I.



ON STRONGLY 1-ABSORBING PRIMARY IDEALS 1213

(⇐) Since (R,
√
I) is local, then R[[X]] is local with maximal ideal

√
I +

XR[[X]] =
√
I +XR[[X]] (by [5, Theorem 2]). Moreover, (

√
I +XR[[X]])2 ⊆

(
√
I)2 +XR[[X]] ⊆ I +XR[[X]]. Then, I +XR[[X]] is a strongly 1-absorbing

primary ideal of R[[X]]. �
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