• Title/Summary/Keyword: steep subthreshold slope

Search Result 6, Processing Time 0.018 seconds

Steep subthreshold slope at elevated temperature in junctionless and inversion-mode MuGFET (고온에서 무접합 및 반전모드 MuGFET의 문턱전압 이하에서 급격히 작은 기울기 특성)

  • Lee, Seung-Min;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2133-2138
    • /
    • 2013
  • In this paper, the variation of a steep subthreshold slope at elevated temperature in nanowire n-channel junctionless and inversion mode MuGFETs has been compared. It has been observed that the subthreshold slopes are increased with the increase of the operation temperature in junctionless and inversio-mode transistors. The variation of a subthreshold slope with operation temperature is more significant in junctionless transistor than inversion-mode transistor. The temperature dependence on the variation of a subthreshold slope for different fin widths shows a similar behavior regardless of fin width. From the temperature dependence on the variation of a subthreshold slope for different substrate biases, it has been observed that the variation of a subthreshold slope is less significant when the substrate bias was applied. It is worth noting that one can achieve a subthreshold slope of below 41mV/dec at elevated temperature of 400K using the junctionless MuGFETs with a positive substrate bias.

Dual Gate L-Shaped Field-Effect-Transistor for Steep Subthreshold Slope

  • Najam, Faraz;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.171-172
    • /
    • 2018
  • Dual gate L-shaped tunnel field-effect-transistor (DG-LTFET) is presented in this study. DG-LTFET achieves near vertical subthreshold slope (SS) and its ON current is also found to be higher then both conventional TFET and LTFET. This device could serve as a potential replacement for conventional complimentary metal-oxide-semiconductor (CMOS) technology.

  • PDF

Si1-xGex Positive Feedback Field-effect Transistor with Steep Subthreshold Swing for Low-voltage Operation

  • Hwang, Sungmin;Kim, Hyungjin;Kwon, Dae Woong;Lee, Jong-Ho;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.216-222
    • /
    • 2017
  • The most prominent challenge for MOSFET scaling is to reduce power consumption; however, the supply voltage ($V_{DD}$) cannot be scaled down because of the carrier injection mechanism. To overcome this limit, a new type of field-effect transistor using positive feedback as a carrier injection mechanism (FBFET) has been proposed. In this study we have investigated the electrical characteristics of a $Si_{1-x}Ge_x$ FBFET with one gate and one-sided $Si_3N_4$ spacer using TCAD simulations. To reduce the drain bias dependency, $Si_{1-x}Ge_x$ was introduced as a low-bandgap material, and the minimum subthreshold swing was obtained as 2.87 mV/dec. This result suggests that a $Si_{1-x}Ge_x$ FBFET is a promising candidate for future low-power devices.

A Design Evaluation of Strained Si-SiGe on Insulator (SSOI) Based Sub-50 nm nMOSFETs

  • Nawaz, Muhammad;Ostling, Mikael
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.136-147
    • /
    • 2005
  • A theoretical design evaluation based on a hydrodynamic transport simulation of strained Si-SiGe on insulator (SSOI) type nMOSFETs is reported. Although, the net performance improvement is quite limited by the short channel effects, simulation results clearly show that the strained Si-SiGe type nMOSFETs are well-suited for gate lengths down to 20 nm. Simulation results show that the improvement in the transconductance with decreasing gate length is limited by the long-range Coulomb scattering. An influence of lateral and vertical diffusion of shallow dopants in the source/drain extension regions on the device performance (i.e., threshold voltage shift, subthreshold slope, current drivability and transconductance) is quantitatively assessed. An optimum layer thickness ($t_{si}$ of 5 and $t_{sg}$ of 10 nm) with shallow Junction depth (5-10 nm) and controlled lateral diffusion with steep doping gradient is needed to realize the sub-50 nm gate strained Si-SiGe type nMOSFETs.

Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage

  • Kwon, Wookhyun;Park, In Jun;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.286-291
    • /
    • 2015
  • For highly scalable NAND flash memory applications, a compact ($4F^2/cell$) nonvolatile memory architecture is proposed and investigated via three-dimensional device simulations. The back-channel program/erase is conducted independently from the front-channel read operation as information is stored in the form of charge at the backside of the channel, and hence, read disturbance is avoided. The memory cell structure is essentially equivalent to that of the fully-depleted transistor, which allows a high cell read current and a steep subthreshold slope, to enable lower voltage operation in comparison with conventional NAND flash devices. To minimize memory cell disturbance during programming, a charge depletion method using appropriate biasing of a buried back-gate line that runs parallel to the bit line is introduced. This design is a new candidate for scaling NAND flash memory to sub-20 nm lateral dimensions.

Properties of CNT field effect transistors using top gate electrodes (탑 게이트 탄소나노튜브 트랜지스터 특성 연구)

  • Park, Yong-Wook;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.313-318
    • /
    • 2007
  • Single-wall carbon nanotube field-effect transistors (SWCNT FETs) of top gate structure were fabricated in a conventional metal-oxide-semiconductor field effect transistor (MOSFET) with gate electrodes above the conduction channel separated from the channel by a thin $SiO_{2}$ layer. The carbon nanotubes (CNTs) directly grown using thin Fe film as catalyst by thermal chemical vapor deposition (CVD). These top gate devices exhibit good electrical characteristics, including steep subthreshold slope and high conductance at low gate voltages. Our experiments show that CNTFETs may be competitive with Si MOSFET for future nanoelectronic applications.