• Title/Summary/Keyword: stability and bifurcation theory

Search Result 27, Processing Time 0.026 seconds

BIFURCATION ANALYSIS OF A DELAYED EPIDEMIC MODEL WITH DIFFUSION

  • Xu, Changjin;Liao, Maoxin
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.321-338
    • /
    • 2011
  • In this paper, a class of delayed epidemic model with diffusion is investigated. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulation are also carried out to support our analytical findings. Finally, biological explanations and main conclusions are given.

FACTS Application for the Voltage Stability with the Analysis of Bifurcation Theory (전압안정도 향상을 위한 FACTS의 적용과 Bifurcation이론 해석)

  • 주기성;김진오
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.394-402
    • /
    • 2000
  • This paper proposes a bifurcation theory method applied for voltage stability analysis and shows the improvement of voltage stability by attaching the FACTS devices in the power system. A power system is generally expressed by a set of equations of highly nonlinear dynamical system which includes system parameters(real or reactive power). Sometimes variation of parameters in the system may result in complication behaviors which give rise to system instability. The addition of FACTS increases the range of voltage stability in the power system. The effect of FACTS which improves voltage stability are illustrated in the case studies by delaying of Unstable Hopf Bifurcation and Saddle Node Bifurcation.

  • PDF

STABILITY AND BIFURCATION ANALYSIS OF A LOTKA-VOLTERRA MODEL WITH TIME DELAYS

  • Xu, Changjin;Liao, Maoxin
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.1-22
    • /
    • 2011
  • In this paper, a Lotka-Volterra model with time delays is considered. A set of sufficient conditions for the existence of Hopf bifurcation are obtained via analyzing the associated characteristic transcendental equation. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form method and center manifold theory. Finally, the main results are illustrated by some numerical simulations.

Bifurcation Modes in the Limit of Zero Thickness of Axially Compressed Circular Cylindrical Shell

  • Kwon, Young-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • Bifurcation intability modes of axially compressed circular cylindrical shell are investigated in the limit of zero thickness (i.e., h (thickness) ${\rightarrow}$ 0) analytically, adopting the general stability theory developed by Triantafyllidis and Kwon (1987) and Kwon (1992). The primary state of the shell is obtained in a closed form using the asymptotic technique, and then the straight-forward bifurcation analysis is followed according to the general stability theory to obtain the bifurcation modes in the limit of zero thickness in a full analytical manner. Hence, the closed form bifurcation solution is obtained. Finally, the result is compared with the classical one.

  • PDF

BIFURCATION ANALYSIS OF A DELAYED PREDATOR-PREY MODEL OF PREY MIGRATION AND PREDATOR SWITCHING

  • Xu, Changjin;Tang, Xianhua;Liao, Maoxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.353-373
    • /
    • 2013
  • In this paper, a class of delayed predator-prey models of prey migration and predator switching is considered. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, biological explanations and main conclusions are given.

A Development of Analytical Strategies for Elastic Bifurcation Buckling of the Spatial Structures (공간구조물의 탄성 분기좌굴해석을 위한 수치해석 이론 개발)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.563-574
    • /
    • 2009
  • This paper briefly describes the fundamental strategies--path-tracing, pin-pointing, and path-switching--in the computational elastic bifurcation theory of geometrically non-linear single-load-parameter conservative elastic spatial structures. The stability points in the non-linear elasticity may be classified into limit points and bifurcation points. For the limit points, the path tracing scheme that successively computes the regular equilibrium points on the equilibrium path, and the pinpointing scheme that precisely locates the singular equilibrium points were sufficient for the computational stability analysis. For the bifurcation points, however, a specific procedure for path-switching was also necessary to detect the branching paths to be traced in the post-buckling region. After the introduction, a general theory of elastic stability based on the energy concept was given. Then path tracing, an indirect method of detecting multiple bifurcation points, and path switching strategies were described. Next, some numerical examples of bifurcation analysis were carried out for a trussed stardome, and a pin-supported plane circular arch was described. Finally, concluding remarks were given.

MEAN SQUARE STABILITY IN A MODIFIED LESLIE-GOWER AND HOLLING-TYPE II PREDATOR-PREY MODEL

  • Pal, Pallav Jyoti;Sarwardi, Sahabuddin;Saha, Tapan;Mandal, Prashanta Kumar
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.781-802
    • /
    • 2011
  • Of concern in the paper is a Holling-Tanner predator-prey model with modified version of the Leslie-Gower functional response. Dynamical behaviours such as stability, permanence and Hopf bifurcation have been carried out deterministically. Using the normal form theory and center manifold theorem, the explicit formulae determining the stability and direction of Hopf bifurcation have been derived. The deterministic model is extended to a stochastic one by perturbing the growth equation of prey and predator by white and colored noises and finally the mean square stability of the stochastic model systems is investigated analytically. An extensive quantitative analysis has been performed based on numerical computation so as to validate the applicability of the proposed mathematical model.

A Study on the Critical Speed of Railway Vehicles (철도차량의 임계속도에 관한 연구)

  • Jeong, U-Jin;Kim, Seong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1991-1999
    • /
    • 2000
  • This research has been performed to reveal the hysteresis phenomena of the hunting motion in a railway passenger car having a bolster. Since linear analysis can not explain them, bifurcation analysis is used to predict its outbreak velocities in this paper. However bifurcation analysis is attended with huge computing time, thus this research proposes more effective numerical algorithm to reduce it than previous researches. Stability of periodic solution is obtained by adapting of Floquet theory while stability of equilibrium solutions is obtained by eigen-value analysis. As a result, linear and nonlinear critical speed are acquired. Full scale roller rig test is carried out for the validation of the numerical result. Finally, it is certified that there are many similarities between numerical and test results.

BIFURCATION OF A PREDATOR-PREY SYSTEM WITH GENERATION DELAY AND HABITAT COMPLEXITY

  • Ma, Zhihui;Tang, Haopeng;Wang, Shufan;Wang, Tingting
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.43-58
    • /
    • 2018
  • In this paper, we study a delayed predator-prey system with Holling type IV functional response incorporating the effect of habitat complexity. The results show that there exist stability switches and Hopf bifurcation occurs while the delay crosses a set of critical values. The explicit formulas which determine the direction and stability of Hopf bifurcation are obtained by the normal form theory and the center manifold theorem.

Modeling of rain-wind induced vibrations

  • Peil, Udo;Nahrath, Niklas
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • Rain-wind induced vibrations of cables are a challenging problem in the design of cable-stayed bridges. The precise excitation mechanism of the complex interaction between structure, wind and rain is still unknown. A theoretical model that is able to accurately simulate the observed phenomena is not available. This paper presents a mathematical model describing rain-wind induced vibrations as movement-induced vibrations using the quasi-steady strip theory. Both, the vibrations of the cable and the movement of the water rivulet on the cable surface can be described by the model including all geometrical and physical nonlinearities. The analysis using the stability and bifurcation theory shows that the model is capable of simulating the basic phenomena of the vibrations, such as dependence of wind velocity and cable damping. The results agree well with field data and wind tunnel tests. An extensive experimental study is currently performed to calibrate the parameters of the model.