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STABILITY AND BIFURCATION ANALYSIS OF A
LOTKA-VOLTERRA MODEL WITH TIME DELAYS
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ABSTRACT. In this paper, a Lotka-Volterra model with time delays is con-
sidered. A set of sufficient conditions for the existence of Hopf bifurca-
tion are obtained via analyzing the associated characteristic transcenden-
tal equation. Some explicit formulae for determining the stability and the
direction of the Hopf bifurcation periodic solutions bifurcating from Hopf
bifurcations are obtained by applying the normal form method and center
manifold theory. Finally, the main results are illustrated by some numerical
simulations.
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1. Introduction

The dynamic relationship between predators and preys has long been, and
will continue to be, one of the dominant themes in both ecology and mathe-
matical ecology due to its universal existence and importance [14]. The dynam-
ics properties (including stable, unstable, oscillatory and chaotic behavior ) of
predator-prey system have been studied extensively since the theoretical work of
Lotka (1926), Volterra (1931), Nicholson and Bailey (1935) and the experimental
work of Gause (1934). For example, Lu and Takenuchi [15] have proved that a
two species Lotka-Volterra delayed competition system is permanent under any
delay effect provided that the corresponding undelayed system has a globally
stable positive equilibrium. They have also obtained conditions for global sta-
bility of positive equilibrium. Mukherjee and Roy [16] proposed a generalized
prey-predator system with time delay and find the conditions for uniform per-
sistence and global stability. For more research on predator-prey systems, one
can see the references cited therein.
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Recently, Zhang and Chen [2] investigated the permanence and the global at-
tractivity of positive periodic solution for the following non-autonomous delayed
predator—prey system

@1(t) = z1()[r1(t) — ann (D21 (t — 1) — arzzs(t — 713)],

Eo(t) = wo(t)[r2(t) — azz(t)22(t — T22) — azs(t)zs(t — 723)],

&3(t) = 23(t)[—r3(t) + asi(t)z1(t — 731) + as2(t)z2(t — 732)
— as3(t)zs(t — 733)]

with the initial conditions

LL’l(S) = ¢Z(S) 2 07 ERS (_Tu 0)7 ¢z(0) > 077’ = 172737

where x;(i = 1,2) denote the density of the i-th pery at time ¢, 23 denotes the
density of the predator at time ¢, all the coefficients in system (1) are continuous
strictly positive bounded functions and 71, 713, To2, T3, T31,

T32, T33 are all positive constants.

It is worth pointing out that an important and ubiquitous problem in predator-
prey theory and related topics in mathematical ecology concerns the periodic
phenomena occur in species. For a long time, it has been recognized that peri-
odic solutions can arise through the Hopf bifurcation in delay equation [13].

In the present paper, we will provide a detailed analysis on the local Hopf
bifurcation of system (1) under the following assumptions:

(Hl) T (t) (’L = 1 2 3) CL11( ) alg(t), a2 (t), a3 (t), asiq (t), as2 (t), ass (t) are all PpoOs-
itive constants, i.e., r;(t) = r;,a11(t) = a11,a13(t) = a13,a22(t) = agq,as3(t) =
azs, az1(t) = as1, asz(t) = asz, az3(t) = ass;

(H2) 711 = Ti3 = T2 = To3 = T31 = T32 =T33 = T.

Based on the assumptions above, system (1) can be transformed as the fol-
lowing system

(1)

:i?l(t) = :Z?l(t) [’r’l - allxl(t — 7') — CL13{E3(t — T)],
To(t) = w2(t)[r2 — agoxa(t — 7) — agzws(t — 7)), (2)
ig(t) = ,Tg(f)[—?‘g, + as1xq (t - T) + as22x9 (t - T) — a33T3 (t - 7')]

The purpose of this paper is to discuss the stability and the properties of
Hopf bifurcation of model (2). More specifically, we will prove that, as the
delay 7 increases , the positive equilibrium loses its stability and a sequence
of Hopf bifurcations occur. Furthermore, using the normal form and center
manifold theory[8], we derive an explicit algorithm and sufficient conditions for
the stability of the bifurcating periodic solutions.

This paper is organized as follows. In Section 2, the stability of the positive
equilibrium and the existence of Hopf bifurcation at the positive equilibrium are
studied. In Section 3, the direction of Hopf bifurcation and the stability and
periodic of bifurcating periodic solutions on the center manifold are determined.
In Section 4, numerical simulations are carried out to illustrate the validity of
the main results. Some main conclusions are drawn in Section 5.
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2. Stability of the equilibrium and local Hopf bifurcations

In this section, we shall study the stability of the positive equilibrium and the
existence of local Hopf bifurcations.

Obviously, system (2) has a unique equilibrium Eo(z7, x5, %), where

x _ 1'1Q22G33 — T'2013032 — I'3A22013 — 7"1G23032

11022033 — G22013a031 — 411023032
« _ 72011033 + 71023031 — 2013031 — I'3011032

To =
2
(11022033 — A22013031 — 411023032
L — 3011022 7 71022031 — 12011032
r=

b
11022033 — 220130431 — A110A230A32

Throughout the paper, we make the following assumptions:

(H3) sign{r1a22a33 — r2a13a32 — 3022013 — 7‘1(123(132}
= sign{r2a11a33 + riagsasr — reaizas; — 7“3<I110b32}
sign{rga11a22 — T1a22031 — 7"2@11@32}
Sign{ilnamags — 220134031 — 011023032}-
It is easy to check that the equilibrium Ey(x}, 23, 23) of Eq. (2) is a positive

equilibrium if the condition (H3) holds.
The linearized system of (2) around Ey(x7, x5, 2%) takes the form:

T (t) = mix (t) + moxq (t — T) + m3x3(t — T),

Zo(t) = nixa(t) + noxa(t — 7) + naxs(t — 7), (3)
#3(t) = pras(t) + pew1(t — 7) + p3wa(t — 7) + pazs(t — 7),

— =

where
myp=nr — 02217; - &13$§, ma = —allff, m3 = —alsff,
ny =mre — 022173 - &23$§, n2 = —a22x§,n3 = —0231173,
p1 = —7T3 + a310] + 3273 — a33T3, P2 = A31T3, P3 = A32T3, P4 = —A33T3.

Then the associated characteristic equation of (3) is

X —mi1 —mee T 0 —mase
det 0 A —mi —mae —nze M (4)
_erfkf _p367>\‘r 2 — my — m267>\‘r

which leads to the the following form:

p1(N)EN + pa(N) 4+ p3s(Ne ™ + py(N)e 2T = 0. (5)



4 Changjin Xu and Maoxin Liao

where

p1(A) = (A —m1)(A —n1)(A —p1),

p2(A) = (p1 — A)[n2(A = ma) + ma(A —n1)] — pa(A — ma) (A —na),
p3(A) = pa[na(A —ma) + ma(X —n1)] — ANmsp2 + n3ps)

+ manag A — manap1 + m3anip2 + N1N3P3,

P4(A) = mangpa + mangps — manaps.

Let A = iwg, T = 79, and substituting this into (5), for the sake of simplicity,
denote wy and 79 by w, 7, respectively, then (5) becomes

(u1 + iv1)(coswT 4 i sinwt) 4 ug + ivg

(6)

+ (ug + iv3) x (coswT — isinwT) + uyg(cos 2wt — isin 2wt) = 0,
where
u; = Re{p;(iw)}, v; = Im{p;(iw)}, (i =1,2,3,4). (7)
Separating the real and imaginary parts, we have

(u1 + us) coswt + (v3 — v1) SinwWT + ug = —uy cos 2w, (8)

(v1 + v3) coswT + (u1 — u3z) SiInwWT + V2 = uyg Sin 2wT. 9)
Squaring both sides of (8) and (9), and adding them up gives

[(uy + us) coswr + (vs — v1) sinwr + usg)”

(10)
+[(v1 + v3) coswT + (ug — uz)sinwr + vy]* = u?.
According to sinwT = £+v/1 — cos? wT, we consider the two cases:
(I) If sinwT = V1 — cos? wr, then (10) takes the following form:
2
[(ul + ug) coswt + (v3 — v1)V 1 — cos?wT + uQ}
) (11)
+ [(vl + v3) coswT + (u1 — uz)V 1 — cos?wr + vz] = uj.
It is easy to see that (11) is equivalent to
q1 cos* wT + qa cos® wT + g3 cos® WT + @4 coswT + g5 = 0, (12)
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where

q1 = [2(u1 +u3)(vs —v1) + 2(v1 +vs) (w1 — u3)]?® + [4(urus + vi1v3)]?,
g2 = 2{[2(u1 4+ u3)(vs — v1) + 2(v1 + v3)(u1 — u3)][2u2(vs — v1)
+ 2ua(u1 — ug)] + [2ua(vs — v1) + 2va(u1 — usg)][4(urus + v1v3)]},
g3 = [2ua(uy + u3) + 2ve(v1 + v3)]? + [2uz(vs — v1) + 2v2(uy — u3)]?
— [2(uy + us)(vs — v1) + 2(v1 + v3)(uy — us))?
= 2uf +0f —uj —vf — (v3 — v1)* = (w1 — u)?][4(w1uz + v1v3)],
qa = 2{[2(u1 4+ u3)(vs — v1) + 2(v1 + v3)(u1 — u3)][2u2(vs — v1)
+2Ba(ur — ug)] + [uf +vf —uj —v3 — (v3 —v1)* — (w1 — u3)?]
X [2ug(vg — v1) + 2v2(u1 — u3)]},
g5 = [uf +vf —u3 — v — (v3 —v1)* — (w1 — ua)’]?

- [2’(1,2(’03 - ’Ul) + 2’1}2(’(1,1 — U3)]2.
By (12), we can obtain the expression of coswT, say
coswt = f1(w), (13)

where fi(w) is a function with respect to w. Substitute (13) into (11), then we
can easily get the expression of sinwr, say

sinwr = fa(w), (14)
where f3(w) is a function with respect to w. Thus we obtain
[P W)+ fw) =1 (15)

If the coefficients of the system (2) are given, it is easy to use computer to
calculate the roots of (14) (say w). Then from (15), we derive

1
Tl(k) = —Jarccos f1(w) + 2kn] (k=0,1,2,...). (16)
w
(IT) If sinwt = —v/1 — cos? wr, then (10) takes the following form:
2
[(ul + ug) coswT — (v3 — v1)V 1 — cos?wT + uQ}
2
+ [(vl + v3) coswT — (u1 — uz)V 1 — cos?wr + vz] = 3.

It is easy to see that (17) is equivalent to

(17)

a cost wr + @5 cos® wr + ¢ cos®? wT + ¢} coswT + ¢ = 0, (18)
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where
q; = [2(u1 +u3)(vs — v1) + 2(v1 4+ v3)(ur — us)]* + [4(uius + viv3))?,
¢y = 2{[-2(u1 + u3)(v3 — v1) — 2(v1 + v3)(u1 — u3)][2uz(vz — v1)
+ 2ua(u1 — ug)] + [2ua(vs — v1) + 2va(u1 — us)][4(urus + v1v3)]},
@5 = [2ua(ur + uz) + 2v2(v1 +v3)]2 + [2ua(vs — v1) + 2va(u1 — uz)]?
— [2(u1 + u3)(v3 —v1) + 2(v1 + v3)(ug — us)]?
—2uf +0f —uj —0f — (v3 — v1)* = (w1 — u)?][4(v1uz + v1v3)],
qr = 2{—[2(u1 + u3)(vs — v1) + 2(v1 + v3)(u1 — u3)][2uz(vz — v1)
+ 209 (ur — ug)] + [uf + vf —uj — ) — (v3 — v1)? — (w1 — u3)?]
X [2ug(vs — v1) + 2v2(u1 — u3)]},
g5 = [uf +vi —uj —v3 — (v3 — v1)” = (u1 —uz)?]?
— [2ua(vs — v1) + 2v9(uy — us))>

Similar process as case (I), we can easily obtain

1
72(’“) = —Jarccos f1(w) + 2kn] (k=0,1,2,...). (19)

w*
where f{(w) is a function with respect to w and f;(w) = coswr, w* ie the roots
of the following equation

W) + 52 w) =1, (20)
where
fo (w) = sinwr. (21)
We assume that (15) and (20) has at least one positive real root. Define 7y =
min{Tl(k),Tz(k)}, (k=0,1,2,...) where Tl(k) and T2(k) is defined by (16) and (19),
respectively. Note that when 7 = 0, (5) becomes
N+ di A%+ do A+ ds =0, (22)
where
di = —(p1 +mini +ma +n2 = ps),
dp = miny + map1 + nip1 + maps + nipa + 2mony + nang + ming
+ Mang — M3pz — N3p3 + M2p4 + N4Pa + MaNz — M3p2 — N3P3,
d3 = —minips — minips + Mmining — mani + manipa + ninaps
— MaN2P1 — M1N4P4 — M — 2N1Ps + M3N2Ps + M2N3P3 — M2N2Ps.
A set of necessary and sufficient conditions that all roots of (22) have a negative

real part is given by the well-known Routh-Hurwitz criteria in the following
form:

Dy =dy >0, (23)
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_ d 1
Dy, = det< ds do ) >0, (24)
d 1 0
D3y = det ds do dy > 0. (25)
0 0 ds

In order to obtain the main results in this paper, it is necessary to make the
following assumptions:

(H4) If (23)-(25) hold, (22) have three roots with negative real parts when 7 = 0,
(3) is stable near the equilibrium.

(H5) Re (£2) ‘T:TO £0.
Taking the derivative of A with respect to 7 in (5), it is easy to obtain:

dX\(T) P
dr Q' (26)

where
P = =™ + A[M(maps + naps + mang — maps — naps3)
+ manipa + Minaps — Manapr — Minaps — manipale 7 (27)

+ 20e 72T (mangpy + mansps — manaps),

Q = [3A—2(m1 +n1 4+ p)A+mani +mips +mapile " + e

—2X(m2 4 n2 + pa) + mips + nips + 2many + nine

+ minz + (m2pa + naps + manz — map2 — nsps)eﬂ\T (28)
— 7€ [(mapa 4+ naps + mana — mapa — nap3)A

+ m3anip2 + nin3ps — Manzp1 — M1NaPs — M2N1Pa)

— 27(m3napa + monzps — m2n2p4)><67M

For the sake of simplicity, denote wy and 7y by w, 7, respectively, then

R (d)\) _ PiQ1 + Qs
i IR T S22
dr

- b
— Q? + Q3
P, = wsinwr — w? cos wT(Mapy + Naps + Mang — Mapa — N3P3)

where

+ wsinwr(manipz + ninzps — mangpr — mingps —m — 2n — 1py)
+ 2w sin wT(M3naps + Manzps — Manapa),

Py = —wcoswT + w? sinwr(maps + napy + mang — msaps — n3ps)
+ w cos wT(manipz + N1n3pPs — MaNapr — MiNgps — MaN1Ps)

+ 2w cos wT(Mm3naps + Mansps — Manapa),
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Q1 = (miny +mip1 + nip1 — 3w?) coswr — 2wsinwr(py + my + 1)
+ T coswT + m1ps + n1pg + 2meong + ning + mine
+ (mapa + naps + mang — m3pa — N3p3) COSWT — T cosWT(M3n1p2
+ nin3ps — Mangp1 — Minaps — Man1pa) — TWSinwWT(Maps + Naps
+ mang — map2 — n3ps3),
Q2 = —sinwr(ming +mipy + nip1 — 3w?) — 2w coswr(p1 +my + ny)
+ 7sinwt — 2w(my + N2 + pg) — sinwT(Maps + Naps + M — 2n2 — M3po
—ngp3) — T coswT(Mapg + naps + M — 2ng — M3ps — n3ps) + 7 sinwT
X (mgnipz + ningps — Mangpr — Ningp — 4 — manips).

In order to investigate the distribution of roots of the transcendental equation
(5), the following Lemma that is stated in [1] is useful.

Lemma 2.1. [1] For the transcendental equation
P e ™ e My = A plOan=t g p0 A4 p©)
+ [P A p D] e
A A ] e A <0,

as (T1,7T2, T3, , Tm) vary, the sum of orders of the zeros of P(\, ™™, ...,e~™m)
in the open right half plane can change, and only a zero appears on or crosses
the imaginary axis.

From Lemma 2.1, it is easy to obtain the following results:

Theorem 2.2. If (H1)-(H5) hold, then

(I) For system (2), its zero solution is asymptotically stable for T € [0, 70);

(IT) system (2) undergoes a Hopf bifurcation at the origin when T = 79, i.e,
system (2) has a branch of periodic solutions bifurcating from the zero solution
near T = Ty.

3. Direction and stability of the Hopf bifurcation

In the previous section, we obtained conditions for Hopf bifurcation to occur
when 7 = 79. In this section, we shall derived the explicit formulae determining
the direction, stability, and period of these periodic solutions bifurcating from
the equilibrium Ey(z], x5, 2%) at these critical value of 7, by using techniques
from normal form and center manifold theory [8], Throughout this section, we
always assume that system (2) undergoes Hopf bifurcation at the equilibrium
Eo(z7, x5, 2%) for 7 = 79, and then +iwy is corresponding purely imaginary roots
of the characteristic equation at the equilibrium Ey(x7, 23, z3).

For convenience, Let t = s7,%;(t) = z;i(rt), (i =1,2,3),7 =710+ p,u € R
and drop the bars for simplification of notations. Then system (2) becomes
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&1(t) = (10 + p)za (t

W[r1 — anizr(t — 1) — arzzs(t — 1)]},

&a(t) = (10 + p)z2(){ ]
N

)

[

[7‘2 — azzxz(t — 1) — a23:c3(t — 1) },
[ rs — a31:c1(t — 1) + a32$2(t — 1)
]

Fo(t) = (70 + )zl (30)
—azszs(t —1)]}.
Its linear part is given by
21(t) = (10 + p)[maza(t) + mewi(t — 7) + maas(t — 7)),
z2(t) = (70 + p)[n1z2(t) + nox2(t — 7) + naxs(t — 7)], (31)
3(t) = (10 + p)[pras(t) + p2aa(t — 7) + psxa(t — 7)
+ pazs(t — 7))
Its non-linear part is given by
—anz1(t)zi(t — 1) — arsz2()zs(t — 1)
Flnu) = () | ottt = D - amssBet =V e

—a33:c3(t)x3(t — 1)
Denote
C*[=1,0] = {¢|p : [-1,0] = R3, each component of ¢

has k order continuous derivative}.

For convenience, denote C[—1,0] by C°[-1,0].
For () = (p1(0), p2(0), p3(0))T € C(|-1 O] R3), define a family of operators

mi 0 0 <p1(0)
Lup =(To+l~t)< 0 m O ) ( ©2(0) )
0 0 p ©3(0)

me 0 ms p1(—1)
+(TO+H)< 0 n2 mng > ( w2(—1) >7
P2 p3  pa w3(=1)

where L, is a one-parameter family of bounded linear operators in C([—1,0], R?)

— R3. By the Riesz representation theorem, there exists a matric whose com-
2

ponents are bounded variation functions 7(6, u) in [-1,0] — R3", such that

0
M¢:/’@mew> (34)

-1

In fact, choosing

mi 0 0 <p1(0)
n(0, 1) =(To+l~t)< 0 m O ) ( ©2(0) )5(9)
0 0 m ©3(0)

me 0 ms3 p1(—1)
—(7‘()+,U,) < 0 no ns3 > ( (pz(—l) > 5(9—|—1)
P2 Ps  pa ps(—1)
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where §(0) is Dirac function, then (34) is satisfied. For (¢1, 92, p3) € (C*[-1,0], R3),
define

dp(9) 1<f<0
Alke = L ) ’ 36
(s { fi dn(s, p)e(s), 6=0 (36)
and
_ 10, -1<6<0,
fe = { Fug),  6=0. (37)

Then (30) is equivalent to the abstract differential equation
2 = A(pw)ze + R(p)xe, (38)

where © = (71,22, 23)7, 2,(0) = 2(t +6),0 € [-1,0].
For v € C([0,1], (R3)*), define

A(s) = { R o (39)

S dnT (8, 0)p(—t), s =0.

For ¢ € C([—1,0], R?) and ¢ € C([0,1], (R®)*), define the bilinear form
0

0
<, >=(0)6(0) - / T (€ — 0)dn(6)(€)de. (40)

—1Je=0
where n(0) = n(6,0). We have the following result on the relation between the
operators A = A(0) and A*.

Lemma 3.1. A = A(0) and A* are adjoint operators.

Proof. Let ¢ € C1([-1,0], R?) and ¢ € C*([0,1], (R?)*). It follows from (40)
and the definitions of A = A(0) and A* that

0 ]
A(0)6(8) > = B(0) A(0)$(0) — / L Pt = xm@ Aopoe)de
B 0 _O 0 B
— §(0) / dn(0)6(0) — / B(E — 6)dn(8) A(0)(€)de
-1 —1Je=0

0 0
— (0) / dn(0)6(6) — / (€= O)in0)5(O)Ls

/ / W ) ano)s(€)ae
£=0 )
- / B(=0)dn(0)6(0) — / /:O[—dw(flge)}dnww(@dg

= A //MA* (€ — 0)dn(B)b(€)de
=< A™Y(s), ()
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This shows that A = A(0) and A* are adjoint operators and the proof is com-
plete.

By the discussions in the Section 2, we know that +iwg7y are eigenvalues of
A(0), and they are also eigenvalues of A* corresponding to iwomy and —iwgTo,
respectively. We have the following result.

Lemma 3.2. The vector
q(0) = (1,a1,a9)Te™0™? 9 € [-1,0],
is the eigenvector of A(0) corresponding to the eigenvalue iwgty, and
q*(s) = D(1,a],a3)e™"™*, s € [0,1],
1s the eigenvector of A* corresponding to the eigenvalue —iwgTy,
moreover, < q*(s),q(0) >= 1, where
2
D=1+ Z a;a; + 7o [(ma + abp2)e™°™ + a1 (aing + ajpa)e™
i=1
+az(ms + ngaj —|—p4a§)ei“’“”’] )
and a1,az and aj,al are defined by (43) and (46), respectively.

Proof. Let g(f) be the eigenvector of A(0) corresponding to the eigenvalue
iwoTo and g*(s) be the eigenvector of A* corresponding to the eigenvalue —iwgTo,
namely, A(0)q(0) = iwoToq(f) and A*q(s) = —iwoToq™(s). From the definitions
of A(0) and A*, we have A(0)q(0) = dq(0)/df and A*q(s) = —dq*(s)/ds. Thus,
q(0) = q(0)e™°™% and ¢*(s) = ¢(0)e™°™%. In addition,

0 mq 0 0 mao 0 ms
[ @) =n| 0 m 0 Jaom| 0w on )o-
-1 0 0 D1 D2 D3 Pa (41)
= A(0)q(0) = iwoT0q(0).
That is
m1 + moe 070 4 magge 070 1wo
niai + naaie”*woTo + nsage w070 _ = 1a1Wo (42)
piaz + pee” Y070 4 psaje” Y070 4 pyage 070 ia2wo
Therefore, we can easily obtain
ns(mi + mee ™0 — jwyq iwy — mq)e™° — mg
ar = 2 ) 4= ) (13)

: — @
ms(n1 — iwg + nge~o) ma

On the other hand,

0 my 0 O T mz 0 mg T
/ q* (—=t)dn(t) = 7o 0 n1 O q"(0) + o 0 n2 mn3 q"(=1)
-1 0 0
p1 p2 p3 y s (44)

= A*q*(0) = —iwoT0q™ (0).
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Namely,
mi1 + mae 070 4 pogie w070 —iwo
niaj +neaje 070 + psaze” w070 = —iajwo | .
p1as + mse 070 + ngale 070 4 pyase” *¥0T0 —iaswo (45)
Therefore, we can easily obtain
« _ paliwo +m1 + mae”070) (—iwo + m1)e™ 070 4+ my
ay = az = — (46)

p2(n1 + nae= om0 + jwg) P2

In the sequel, we shall verify that < ¢*(s),q(8) >= 1. In fact, from (40), we
have < ¢*(s), q(0) >

<4q"(s),4(0) > = D(1,a},a3)(1,a1,a2)"

0 0
- / / D(1,a3,a3)e” 0™ D dn(60)(1, a1, a2) "0 dg
—1Je=0

=D

2 0
L4+ aia — / (1,a;,a;)&emednw)(l,aumd
i=1 -1

2
D {1 + Z a;al + (1,a3,ab) [ToGefiwom} (1,a1, ag)T}

i=1

2
D{l + Z a;a + 7o [(mz + af;pg)eﬂ'“’”m +a1(aing + afgpz)efiwom

i=1
+as(ms + nzaj +p4d§)67iw070} } =1.

where

mo O ms
G = 0 no ns . (47)
b2 p3 P4

Next, we use the same notations as those in Hassard, Kazarinoff and Wan
[8], and we first compute the coordinates to describe the center manifold Cy at
p = 0. Let u; be the solution of Eq. (30) when p = 0.

Define

z(t) =< ¢", 2 >, W(t,0) = 2:(0) — 2Re{z(t)q(0)} (48)
on the center manifold Cy, and we have
W(t,0) = W(z(t),z(t),0), (49)

where
22 z2
W(Z(t), z(t), 9) = W(Z, 2) = WQO? + Wii1zzZ + WOQ? + - (50)
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and z and z are local coordinates for center manifold Cj in the direction of ¢*

and ¢*. Noting that W is also real if x; is real, we consider only real solutions.
For solutions z; € Cy of (30),

2(t) =< ¢"(s), &t >=< ¢*(s), A(0)us + R(0)z; >
=< q"(s), A(O)wt >+ < q"(s), R(0)z, >
=< A*¢*(s),z+ > +q*(0)R(0)z;

//50 (€ = 0)dn(6) A(0) R(0), (£)dé (51)
=< 1WoToq ( ),$t > +q (O)f(0,$t(9)

Ciworoz(t) + ¢*(0) fo(2(2), 2(2)).
That is

Z(t) = iWQTQZ + g(z, 2), (52)

where
22 z2

9(z, 2) 29207 +91125+9027+"' . (53)

Hence, we have
9(2,2) = ¢"(0) fo(2, 2)
= f(0,2¢) (54)
=10D(1,a7,a3) x (f1(0,2¢), f2(0,24), f3(0,24))",
where
J1(0,2¢) = —a11714(0)w14(—1) — a1372¢(0) w34 (1),
f2(0,24) = —a2222:(0)w2¢ (—1) — agzwas (0)w3:(—1),
[3(0,24) = az123:(0)x14(—1) + az2w3¢(0) w2t (—1) — azzwst(0)xs:(—1).
Noticing that

2¢(0) = (x14(0), w21 (0), a:g,t(G))T =W(t,0)+ zq(0) + zq
and
q(e) — (17 ai, az)TeionOG,

we have

2
210(0) = 2 + 2 + WP (0) % +W(1>( )2z + WD) % + -

2 2
=2
22¢(0) = a1z + @1z + W2<§>(0)% + w2 (0)2z + Wé?(())% +n
22 Z_
2

2
230(0) = a2z + asz + WP (0)= + WP (0)2z + W (0)

2



14 Changjin Xu and Maoxin Liao

. . 2
z1e(—1) = e 70705 4 om0z L () (—1 )2 + WD (=122 + WP (~1 )% $on,
) , 2
z2e(—1) :aleﬂ“’oToz+&1eW“T°2—|—W§§)( )Z2 W(z)( 1)zz W(z)(_ )% T
— W T 1w T (3) 22 (3) (3) 22
z3e(—1) = aze” 070z + a2e" 0z + Wy (— )2 + Wi (=Dzz + Wy (— )2+~~~

From (53) and (54), we can obtain

1woTO

9(z,2) = 10D |:—CL1167 — aizaiage w070 a}(—agga%e”“""’o — a23a1a26*iwm'o)

+a_; (a31a2€7 070 + agsaiaze™ Y070 — aggageﬂ“’“"—“)} 22

+ T()D{ — 2a11 Re{e“’om} —2a13Re{da1 ageii“’(’m}
+ a7 [2(122 la1|? Re{e?“070} — 2a93 Re{d1aze *070 }]
+aj [20,31 Ref{ae’07™0} 4 2a35 Re{dia2e"°™} — 2a33|az|? Re{e!*0™0 }} }zi

+10D[(—a11 — a13d@1d2)e™ 0™ + a* (—azdi? — azzdidz)e’0™)

+ a}(as1d2 + as2d1dz — azszdz?)e™070) 22
— 1 1 B .
+ ToD{ —an [EW;;)(_U + 5 Wao (0007 + Wi (=1) + Wﬁ)(O)e*WW}
1 ; 1
— axs [SWED @)z o + ZWED (- + WD Oaze 070 + WP (< 1)
_ 1 . 1 .
b [—am (WD @aet o 4 Sl (a4 WL ©)are oo

1
+W1(f)(—1)a1) — a23 (—

. 1 .
S Wi O)@e0m0 4 ZWid (0)ar + WP (~Daze 070

5 1 ) 1
+W1(f)(—1)“1) + a3 {031 (5W§3)(0)e“°70 + EWéé)(—l)a_z + WD (“1)ay
+W1(f)(0)eilwo‘ro) +as2 (sz(g) (0)aye*omo + EWég)(—l)a_z + Wl(f)((])alef“"UTO

1 )
5 20) (0) uuor(, + 5‘/[/2(3) (—1)@2 + Wl(:?) (0)@267“}070

+WD (—1) ‘2)} }z22+ R

then we get

+W1(f)(—1)a2) — as3 (

—1iwoTo

920 = 210D [—ane — a13a1a2e” 070 4 ¥ (—agzafe” 0™ — agzarage” OO

+CL_;(CL31(12677'WOT0 + aszaijagse” *070 — agga%eﬂw“"'“)} ,
g11 = 2T0D{ — a11Re{e'¥070} — a13Re{diaze™*¥070}
+a} [a22|a1\2Re{e“"070} — a2z Re{d1aze™"“070 }}

+ aé [agl Re{azei“’(’m} + asz Re{d1 azei“’("’o} — as3 \a2|2Re{e“’0m }} },
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go2 = 270 D[(—a11 — a13d1a2)e"°™ + aj (—azzd1® — agzdida)e™0™)
+ aj(as1d2 + aszdidz — azzda?)e™ 0],
= 1 1 . .
g21 = 2TOD{ —an [EWQ%)(—I) + 5 Wi @00 £ Wi (=1) + WI(P(O)e*MOTO}

1 . 1 .
—axs [5WE @zt o+ WD (1) + WP Oaze 00 + WP (- 1)a

- 1 . 1 .
+a; [—m (—W§§><0)a-1 €070 ZWi) (~1)dr + WY (0)aze 070 +wff><—1>a1)

2

1 . 1 )
— axs (W8 Oae o + SWiD O)a + WP (~Daze 00 4w (~1)ar )

For unknown
Wi (0), w2 0), w2 (0), Wi 0), w2 (0), w0),
Wi (1), W (1), W& (=1), W@ (—1), W (= 1), WP (—1)

in go1, we still need to compute them.
Form (38), (40), we have

W= { AW —2Re{7*(0)fq(0)},  —-1<6<0,
| AW —2Re{q*(0)fq(0)} + [, 6=
AW + H(z, 2,0),
where
2 =2

H(2,7,6) = Hao(6) 5 + Hn (6)2% + Hoo(6) 5 + -

Comparing the coefficients, we obtain
(A — 2iTOW0)W20 = —Hgo(@),

AW11(6) = —Hy1(6), - ,
And we know that for § € [-1,0),
H(z,%,0) = —G"(0)foq(0) — ¢"(0) foq(0) = —g(2,2)a(0) — §(z, 2)q(0).
Comparing the coefficients of (56) with (59) gives that
Hy(0) = —g20q(0) — g024(0),
Hi1(0) = —g119(0) — g114(0).
From (57),(60) and the definition of A | we get
Wao(0) = 2iworoWao () + g204(6) + go2q(6).-
Noting that ¢(#) = ¢(0)e™°™%  we have
1920

Wao(0) = onO‘J(O)eMOTOB + —315;); q(0)e= om0l 4 B, g2iwoTod

where F; is a constant vector.
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Similarly, from (58), (61) and the definition of A, we have
W11(60) = g119(6) + g114(0),

Wi (8) = —— T2 g(0)eiwom? 4 9L g(g)e—iwomol 4 B,
woTo wWoTo

where Fs is a constant vector.

(64)

(65)

In what follows, we shall seek appropriate E, E5 in (63), (65), respectively.

It follows from the definition of A and (60), (61) that

0
/_1 dﬁ(@)WQO(Q) = QiWQTQW20(0> — HQQ(O)

and
0
[ an@wa(e) =~ ),
-1
where n(0) = 1(0,0).
From (57), we have
Ha0(0) = —g20q(0) — g0624(0) + 270(H1, Ha, Hs) ™,
where
Hy = —aj1e” ™™ — aj3aia0e” "0,
HQ = —QQQCL%eiinTD — a23a1a267iw0T0,
Hs = aglagefi“’“”’ + a32a1a267iw070 — aggagefi“’“m.

From (58), we have
Hi11(0) = —9119(0) — g11(0)g(0) + 10( Py, P2, P3)",

where
P1 = —allRe{eM“To} — algRe{a_lage*W“T“,

PQ = a22|a1|2Re{eM°T°} — a23R€{d1a267iw070,

P3 = az1 Re{aze™°™} + azp Re{d1a2e™°™} — azslaz|® Re{e™°™}.

Noting that

0
<iw07'01 —/ ew"”’edn(@)> q(0) =0,

—1

0
(—mom -/ emf’dmm) 4(0) = 7o(Hy, Ho, Hy)"

—1

and substituting (63) and (68) into (66), we have

0
(27:&)07’0[ —/ 62iw0T09d77(9)) El = To(Hl,HQ,Hg)T.

—1

(66)

(69)
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That is
2iwg — my — moe 20700 0 —mge 2*w0T0?
0 2iwg — Ny — n2672iw07'09 7n3672iw07'09
_ —2iwgTo0 _ —2iwg Tl : _ _ —2iwg Tl
p2e p3e 2iwg — p1 — pae
(73)
1 2 3)\T T
x (B, P ECNT = (Hy, Ha, H3)™.
Hence,
g0 _ Aqy @ _ Aqp 53 _ Agz (74)
1 - ) 1 - ] 1 - ]
Aq Aq Aq
where
ino —my — m2672iw0709 0 7m3872iw07'09
A = det 0 2iwg — ny — nge”2tw0T00 —nge”2woT0?
7p2872iw07'09 7;036721'“107'09 2iwg — p1 — p4872iw07'09
Hy 0 —mge— 210700
A11 = det Hs 2iwg — nq — noe 2#w070? —nge 20700 s
Hs 7[)3872“”07-09 2iwo — p1 — p46721w0709
%iwe — M1 — mge— 20700 —mge— 20700
A1 = det 0 Ho _nse—2iw01—09 s
—ppe—2i®0T00 Hs 2wy — p1 — pae— 290700
2iw0 — mi — m2€72iw0709 0 H1
Aq3 = det 0 2iwp — N1 — 77,2672“)0709 Hy>
—pae—2iw0To0 —pae—2i%0T00 Hs

Similarly, substituting (64) and (69) into (67), we have

(/0 dn(9)> Ey = (P, Py, P)T. (75)

-1
That is
WY
mq + mao 0 ms 2 —Pl
0 ni + ng n3 Eé2) = -~ |. (76)
P2 D3 1+ Da Eé3) -P3
Hence,
g0 _ Aoy 5® _ Agy 53 _ Asgg (77)
2 Ay’ P Ay’ TP Ay
where
mi1 + mo 0 ms —P 0 m3
Ag = det 0 ni + no ns , Ao = det —P> n1+ng n3 s
D2 p3 p1+Dpa —P3 p3 p1+pa
m1+me —Pp ms m1 + meo 0 P
Aoo = det 0 —Ps ns , Aoz =det 0 ny+ne —Ps

P2 —P3 p1+ps D2 D3 —Ps
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From (63), (65), (74), (77), we can calculate g2 and derive the following values:

i |902|2) 921

c1(0) <920911 —2[g11)* —

~ 2070 3 2
_ Re{a(0)}

B2 = T RN (o)}

B2 = 2Re(c1(0)),

Imf{e1(0)} + paIm{\ ()}

T, = .
WoTo

These formulaes give a description of the Hopf bifurcation periodic solutions of
(30) at 7 = 79, on the center manifold. From the discussion above, we have the
following result:

Theorem 3.3. For system (2), if (H1)-(H5) hold, the periodic solution is su-
percritical (subcritical) if pua > 0 (2 < 0); The bifurcating periodic solutions
are orbitally asymptotically stable with asymptotical phase (unstable) if B2 < 0

(B2 > 0); The periodic of the bifurcating periodic solutions increase (decrease) if
T >0 (TQ < O)

Remark 3.4. A 70T -periodic solution of (30) is a T-periodic solution of (2).

4. Numerical examples

In this section, we present some numerical results of system (2) to verify the
analytical predictions obtained in the previous section. From Section 3, we may
determine the direction of a Hopf bifurcation and the stability of the bifurcation
periodic solutions. Let us consider the following special case of system (2)

z1(t) = z1(¢)[0.5 — 0.3z1 (¢t — 7) — 0.8z3(t — 7)],
{ To (t) = Z9 (t) [05 — l’z(t — 7‘) — 0.823 (t — 7‘)]7 (78)
z3(t) = z3(t)[-0.5 4 0.5z1 (¢t — 7) + 0.4z2(t — 7) — 0.8z3(t — 7)].
It is easy to see that system (4.1) has a unique positive equilibrium E, (x7, x5, z5)
= (1.0870,0.3261,0.2174). By some complicated computation by means of Mat-
lab 7.0, we get 7o ~ 1.53, X (70) = 2.0522 — 3.1345i. Thus we can calculate the
following values:

c1(0) &~ —1.1220 — 11.04374, jup ~ 0.7855, B2 ~ —3.4533, Ty ~ 12.1125.

we obtain the conditions indicated in Theorem 2.2 are satisfied. Furthermore, it
follows that pa > 0 and B2 < 0. Thus, the positive equilibrium E, (2}, x5, z3) is
stable when 7 < 79 as is illustrated by the computer simulations ( see Fig.1-
6 ). When 7 passes through the critical value 79, the positive equilibrium
E.(x3,25,2%) loses its stability and a Hopf bifurcation occurs, i.e., a family
of periodic solutions bifurcations from the positive equilibrium E, (z7, x5, }).
Since puo > 0 and B < 0, the direction of the Hopf bifurcation is 7 > 79, and
these bifurcating periodic solutions from E,(z},x3,2%) at 7o are stable, which
are depicted in Fig.7-12.
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Fig.1-3 Dynamic behavior of system (4.1): times series of z;(i = 1,2,3). A
Matlab simulation of the asymptotically stable positive equilibrium to system

(4.1) with 7 = 1.5 < 79 & 1.53. The initial value is (0.5, 0.5, 0.5).

Fig.4 Fig5
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Fig.4-5 Dynamic behavior of system (4.1): projection on x1 — x3, 2 — x3 plane,
respectively. A Matlab simulation of the asymptotically stable positive equilib-
rium to system (4.1) with 7 = 1.5 < 79 &~ 1.53. The initial value is (0.5, 0.5,
0.5).
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Fig.6 Dynamic behavior of system (4.1): projection on z; — 29 — 23 space. A
Matlab simulation of the asymptotically stable positive equilibrium to system
(4.1) with 7 = 1.5 < 79 &~ 1.53. The initial value is (0.5, 0.5, 0.5).
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Fig.7-9 Dynamic behavior of system (4.1): times series of z;(i = 1,2,3). A
Matlab simulation of the asymptotically stable positive equilibrium to system
(4.1) with 7 = 1.6 > 79 ~ 1.53. The initial value is (0.5, 0.5, 0.5).
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Fig.11
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Fig.10-11 Dynamic behavior of system (4.1): projection on x1 — x3, 2 — 3
plane, respectively. A Matlab simulation of the asymptotically stable positive
equilibrium to system (4.1) with 7 = 1.6 > 79 ~ 1.53. The initial value is (0.5,
0.5, 0.5).

) 01 o %0

Fig.12 Dynamic behavior of system (4.1): projection on x; — x2 — x3 space,
respectively. A Matlab simulation of the asymptotically stable positive equilib-
rium to system (4.1) with 7 = 1.6 > 79 ~ 1.53. The initial value is (0.5, 0.5,
0.5).

5. Conclusions

In this paper, we have investigated local stability of the positive equilibrium
E, (3,23, 2%) and local Hopf bifurcation in a Lotka-Volterra model with time
delays. We have showed that if the conditions (H1) — (H5) hold, the positive
equilibrium FE, (z7, 25, 2%) of system (1.2) is asymptotically stable for all 7 €
[0,79) and unstable for 7 > 7p. We have also showed that, if the conditions
(H1) — (H5) hold, as the delay 7 increases, the equilibrium loses its stability
and a sequence of Hopf bifurcations occur at E,(z],z},x%), ie., a family of
periodic orbits bifurcates from the the positive equilibrium E,(z3, 25, 2%). At
last, the direction of Hopf bifurcation and the stability of the bifurcating periodic
orbits are discussed by applying the normal form theory and the center manifold
theorem.
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