References
- S.G. Ruan, J.J. Wei, On the zero of some transcendential functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A 10 (2003), 863-874
- S.W. Zhang, L.S. Chen, Global attractivity for nonautonomous predator-prey system with time delay, J. Wuhan Univ. (Nat. Sci. Ed.) 49 (2003), 284-288. (In chinese)
- R. Xu, M.A.J. Chaplain, F.A. Davidson, A Lotka-V0lterra type food chain model with stage structure and time delays, J. Math. Anal. Appl. 315 (2006), 90-105 https://doi.org/10.1016/j.jmaa.2005.09.090
- Y.M. Chen, Z. Zhou, Stable periodic of a discrete periodic Lotka-Volterra competition system, J. Math. Anal. Appl. 277 (2003), 358-366. https://doi.org/10.1016/S0022-247X(02)00611-X
- J.A. Cui, L.S. Chen, Permanence and extinction in Logistic and systems with diffusion, J. Math. Anal. Appl. 258 (2001), 512-535. https://doi.org/10.1006/jmaa.2000.7385
- F. Cao, L.S. Chen, Asymptotic behavior of nonautonomous diffusive Lotka-Volterra model, system Sci. & Math.Sci. 11 (1998), 107-111
- Y.L. Song, Y.H. Peng, J.J. Wei, Bifurcation for a predator-prey system with two delays, J. Math. Anal. Appl. 337 (2008), 466-479. https://doi.org/10.1016/j.jmaa.2007.04.001
- B. Hassard, D. Kazarino and Y. Wan, Theory and applications of Hopf bifurcation, Cambridge University Press, Cambridge, 1981.
- X.P. Yan, W. T. Li, Bifurcation and global periodic solutions in a delayed facultative mutualism system, Physica D 227 (2007), 51-69. https://doi.org/10.1016/j.physd.2006.12.007
- X.P. Yan, C.R. Zhang, Hopf bifurcation in a delayed Lokta-Volterra predator-prey system, Nonlinear Anal.: Real World Appl. 9 (2008), 114-127. https://doi.org/10.1016/j.nonrwa.2006.09.007
- C.B. Yu, J.J. Wei, X.F. Zou, Bifurcation analysis in an age-structured model of a single species living in two idential patches, Appl. Math. Modelling 34 (2009), 1068-1077.
- J. Hale, S. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
- I. Gyori, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Academic Press, New York, 1991.
- A.A. Berryman, The origins and evolutions of predator-prey theory, Ecology 73 (1992), 1530-1535. https://doi.org/10.2307/1940005
- Z. Lu, Y. Takeuchi, Permanence and global attractivity for competitive Lokta-Volterra system with delay, J. Nonlinear Anal. TMA 22 (1994), 847-856. https://doi.org/10.1016/0362-546X(94)90053-1
- D. Mukherjee, A.B. Roy, Uniform persistence and global attractivity theorem for generalized prey-predator system with time delay, Nonlinear Anal. 38 (2003), 449-458.