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BIFURCATION ANALYSIS OF A DELAYED EPIDEMIC

MODEL WITH DIFFUSION

Changjin Xu and Maoxin Liao

Abstract. In this paper, a class of delayed epidemic model with diffusion
is investigated. By analyzing the associated characteristic transcenden-
tal equation, its linear stability is investigated and Hopf bifurcation is
demonstrated. Some explicit formulae determining the stability and the
direction of the Hopf bifurcation periodic solutions bifurcating from Hopf
bifurcations are obtained by using the normal form theory and center
manifold theory. Some numerical simulation are also carried out to sup-
port our analytical findings. Finally, biological explanations and main

conclusions are given.

1. Introduction

In recent years, there has been a growing interest in the study of the dynam-
ical behavior (including stable, unstable, persistent and oscillatory behavior)
of epidemic models which plays an important role in the study of mathematical
epidemiology. Great attention has been paid to the dynamics properties of the
epidemic models which have significant biological background. Many excellent
and interesting results have been obtained [1–5, 7, 9–11, 13–14, 16–21, 25–26].
In 1997, Zhang and Fang [24] investigated dispersal properties of the following
epidemic model:

(1)







ṡ1 = −k1s1I1 + s1(a1 − s1) + ε(s2 − s1),
ṡ2 = s2(a2 − s2) + ε(s1 − s2),

İ1 = k1s1I1 − bI1 − cI1,

where s1, s2 represent the susceptible numbers in place 1 at time t and the
susceptible numbers in place 2 at time t, respectively, I1 denotes the infective
numbers in place 1 at time t, k is infective coefficient, ks1 is infective rate,
a1, a2 are the carrying capacities in place 1 and in place 2, respectively, b is
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death rate of infective numbers, c is eliminative rate of the infective numbers,
c is diffusion rate between the susceptible numbers. All the parameters are
positive constants.

Considering the factor that the infective numbers in place 1 will stay latent
before becoming infectious, we think that time delay has important biologic
meaning in epidemic models and so it is more plausible to incorporate the time
delay into the model. Based on the point of view, we revise model (1) into the
following delayed epidemic model with diffusion:

(2)







ṡ1 = −k1s1I1(t− τ) + s1(a1 − s1) + ε(s2 − s1),
ṡ2 = s2(a2 − s2) + ε(s1 − s2),

İ1 = k1s1I1(t− τ)− bI1(t− τ) − cI1(t− τ),

where all the parameters are positive constants. The more detail biological
meaning of the coefficients of the system (2) are same as those in (1) and one
can see [24].

In this paper, we study the stability, the local Hopf bifurcation for system
(2). To the best of our knowledge, it is the first time to deal with the research
of Hopf bifurcation for the model (2).

The remainder of the paper is organized as follows. In Section 2, we in-
vestigate the stability of the boundary equilibrium and the occurrence of local
Hopf bifurcations. In Section 3, the direction and stability of the local Hopf
bifurcation are established. In Section 4, numerical simulations are carried out
to illustrate the validity of the main results. Biological explanations and some
main conclusions are drawn in Section 5.

2. Stability of the boundary equilibrium and local Hopf bifurcations

In this section, we shall study the stability of the boundary equilibrium and
the existence of local Hopf bifurcations. Throughout the paper, we assume that
(H1). The equation

(3)

{

s1(a1 − s1) + ε(s2 − s1) = 0,
s2(a2 − s2) + ε(s1 − s2) = 0

has an unique positive root.
It is easy to see that if the condition (H1) holds, then Eq.(2) has an unique

boundary equilibrium E0(s
∗

1, s
∗

2, I
∗

1 ), where I
∗

1 = 0 and s∗1, s
∗

2 are the positive
roots of Eq.(3).

Let s̄1(t) = s1(t) − s∗1, s̄2(t) = s2(t) − s∗2, Ī1(t) = I1(t) and still denote
s̄i(t)(i = 1, 2), Ī1(t) by si(t)(i = 1, 2), I1(t), respectively. Then (2) becomes

(4)







ṡ1(t) = (a1 − 2s∗1 − ε)s1 + εs2 − ks∗1I1(t− τ) − s21 − ks1I1(t− τ),
ṡ2(t) = εs1 + (a2 − 2s∗2 − ε)s2 − s22,

İ1(t) = (ks∗1 − b− c)I1(t− τ) + ks1I1(t− τ),
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The linearization of Eq.(4) at (0, 0, 0) is

(5)







ṡ1(t) = (a1 − 2s∗1 − ε)s1 + εs2 − ks∗1I1(t− τ),
ṡ2(t) = εs1 + (a2 − 2s∗2 − ε)s2,

İ1(t) = (ks∗1 − b− c)I1(t− τ)

whose characteristic equation is

(6) [λ− (ks∗1 − b− c)e−λτ ]{[λ− (a1 − 2s∗1 − ε)][λ− (a2 − 2s∗2 − ε)]− ε2} = 0.

Obviously, we have

(7) λ− (ks∗1 − b− c)e−λτ = 0

or

(8) [λ− (a1 − 2s∗1 − ε)][λ− (a2 − 2s∗2 − ε)]− ε2 = 0.

In the following, we need to investigate the distribution of roots of Eq.(7) and
Eq.(8). In order to investigate the distribution of roots of the transcendental
equation Eq.(7) and Eq.(8), the following lemma is useful.

Lemma 2.1 ([5]). For the transcendental equation

P (λ, e−λτ1 , . . . , e−λτm) = λn + p
(0)
1 λn−1 + · · ·+ p

(0)
n−1λ+ p(0)n

+
[

p
(1)
1 λn−1 + · · ·+ p

(1)
n−1λ+ p(1)n

]

e−λτ1 + · · ·

+
[

p
(m)
1 λn−1 + · · ·+ p

(m)
n−1λ+ p(m)

n

]

e−λτm = 0,

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P (λ, e−λτ1 , . . . , e−λτm)

in the open right half plane can change, and only a zero appears on or crosses

the imaginary axis.

For τ = 0, (7) deduces to

(9) λ = ks∗1 − b− c.

It is easy to see that λ = ks∗1 − b− c < 0 if the condition:

(H2) ks∗1 < b + c

holds.
For ω0 > 0, iω0 is a root of (7) if and only if

iω0 = (ks∗1 − b− c)(cosω0τ − i sinω0τ).

Separating the real and imaginary parts, we get

(10)

{

(ks∗1 − b− c) cosω0τ = 0,
(ks∗1 − b− c) sinω0τ = −ω0.

Then we obtain

(11) ω0 = −(ks∗1 − b− c), τk = −
1

ks∗1 − b− c

(

2kπ +
π

2

)

(k = 0, 1, 2, . . .).
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In the sequel, we consider the roots of Eq.(8). Obviously, (8) can be translated
into the following form:
(12)
λ2 − [a1 + a2 − 2(s∗1 + s∗2)− 2ε]λ+ (a1 − 2s∗1 − ε)(a2 − 2s∗2 − ε)− ε2 = 0.

A set of necessary and sufficient conditions for all roots of (12) to have a
negative real part is given in the following form:

(H3) a1 + a2 − 2(s∗1 + s∗2)− 2ε < 0, (a1 − 2s∗1 − ε)(a2 − 2s∗2 − ε)− ε2 > 0.

Let λ(τ) = α(τ) + iω(τ) be a root of (7) near τ = τk, and α(τk) = 0, and
ω(τk) = ω0. Due to functional differential equation theory, for every τk, k =
0, 1, 2, 3, . . . , there exists ǫ > 0 such that λ(τ) is continuously differentiable
in τ for |τ − τk| < ǫ. Substituting λ(τ) into the left hand of (7) and taking
derivative with respect to τ , we have

(13)

[

dλ

dτ

]

−1

= −
eλτ

λ(ks∗1 − b− c)
−
τ

λ
.

Then we obtain

(14)

[

d(Reλ(τ))

dτ

]

−1

τ=τk

= −
sinω0τk

ω0(ks∗1 − b− c)
> 0.

The above analysis leads to the following results on the stability and Hopf
bifurcation.

Theorem 2.2. If (H1)-(H3) hold, then the equilibrium E0(s
∗

1, s
∗

2, 0) of system
(2) is asymptotically stable for τ ∈ [0, τ0) and unstable when τ > τ0. More-

over, the system (2) undergoes a Hopf bifurcation at the boundary equilibrium

E0(s
∗

1, s
∗

2, 0) when τ = τk, k = 0, 1, 2, 3, . . ..

3. Direction and stability of the Hopf bifurcation

In the previous section, we obtained conditions for Hopf bifurcation to oc-
cur when τ = τk, k = 0, 1, 2, . . . . In this section, we shall derive the explicit
formulae determining the direction, stability, and period of these periodic solu-
tions bifurcating from the boundary equilibrium E0(s

∗

1, s
∗

2, 0) at these critical
value of τ , by using techniques from normal form and center manifold theory [8].
Throughout this section, we always assume that the system (2) undergoes Hopf
bifurcation at the boundary equilibrium E0(s

∗

1, s
∗

2, 0) for τ = τk, k = 0, 1, 2, . . . ,
and then ±iω0 is corresponding purely imaginary roots of the characteristic
equation at the boundary equilibrium E0(s

∗

1, s
∗

2, 0).
For convenience, let s̄i(t) = si(τt)(i = 1, 2) and Ī1(t) = I1(τt), τ = τk + µ,

where τk is defined by (11) and µ ∈ R, drop the bar for the simplification of
notations, then the system (4) can be written as an FDE in C = C([−1, 0]), R3)
as

(15) u̇(t) = Lµ(ut) + F (µ, ut),
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where u(t) = (s1(τt), s2(τt), I1(τt))
T ∈ C and ut(θ) = u(t + θ) = (s1(t +

θ), s2(t+ θ), I1(t+ θ))T ∈ C, and Lµ : C → R,F : R× C → R are given by

(16)

Lµφ = (τk + µ)





a1 − 2s∗1 − ε ε 0
ε a2 − 2s∗2 − ε 0
0 0 0









φ1(0)
φ2(0)
φ3(0)





+ (τk + µ)





0 0 −ks∗1
0 0 0
0 0 ks∗1 − b− c









φ1(−1)
φ2(−1)
φ3(−1)





and

(17) F (µ, φ) = (τk + µ)





−φ21(0)− kφ1(0)φ3(−1)
−φ22(0)

kφ1(0)φ3(−1)



 ,

respectively, where φ(θ) = (φ1(θ), φ2(θ), φ3(θ))
T ∈ C.

From the discussion in Section 2, we know that if µ = 0, then the system
(3.1) undergoes a Hopf bifurcation at the boundary equilibrium E0(s

∗

1, s
∗

2, 0)
and the associated characteristic equation of the system (15) has a pair of
simple imaginary roots ±ω0τk.

By the representation theorem, there is a matrix function with bounded
variation components η(θ, µ), θ ∈ [−1, 0] such that

(18) Lµφ =

∫ 0

−1

dη(θ, µ)φ(θ) for φ ∈ C.

In fact, we can choose

(19)

η(θ, µ) = (τk + µ)





a1 − 2s∗1 − ε ε 0
ε a2 − 2s∗2 − ε 0
0 0 0



 δ(θ)

− (τk + µ)





0 0 −ks∗1
0 0 0
0 0 ks∗1 − b− c



 δ(θ + 1),

where δ is the Dirac delta function.
For φ ∈ C([−1, 0], R3), define

(20) A(µ)φ =











dφ(θ)
dθ

, −1 ≤ θ < 0,

∫ 0

−1 dη(s, µ)φ(s), θ = 0

and

(21) Rφ =

{

0, −1 ≤ θ < 0,
F (µ, φ), θ = 0.

Then (15) is equivalent to the abstract differential equation

(22) u̇t = A(µ)ut +R(µ)ut,

where ut(θ) = u(t+ θ), θ ∈ [−1, 0].
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For ψ ∈ C([−1, 0], (R3)∗), define

A∗ψ(s) =

{

− dψ(s)
ds

, s ∈ (0, 1],
∫ 0

−1 dη
T (t, 0)ψ(−t), s = 0.

For φ ∈ C([−1, 0], R3) and ψ ∈ C([0, 1], (R3)∗), define the bilinear form

〈ψ, φ〉 = ψ(0)φ(0) −

∫ 0

−1

∫ θ

ξ=0

ψT (ξ − θ)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0), the A = A(0) and A∗ are adjoint operators. By the
discussions in Section 2, we know that ±iω0τk are eigenvalues of A(0), and they
are also eigenvalues of A∗ corresponding to iω0τk and −iω0τk respectively. By
direct computation, we can obtain

q(θ) = (1, α, β)T eiω0τkθ, q∗(s) =M(1, α∗, β∗)eiω0τks,M =
1

B
,

where

α =
ε

iω0 − (a2 − 2s∗2 − ε)
, β =

εα− iω0 + a1 − 2s∗1 − ε

ks∗1e
−iω0τk

,

α∗ = −
iω0 + a1 − 2s∗1 − ε

ε
, β∗ =

ks∗1
iω0 + ks∗1 − b− c

,

B = 1 + ᾱα∗ + β̄β∗ + τk[ᾱβ
∗(ks∗1 − b− c)− ks∗1ᾱ].

Furthermore, 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q̄(θ)〉 = 0.
Next, we use the same notations as those in Hassard [8] and we first compute

the coordinates to describe the center manifold C0 at µ = 0. Let ut be the
solution of Eq.(15) when µ = 0.

Define

(23) z(t) = 〈q∗, ut〉,W (t, θ) = ut(θ)− 2Re{z(t)q(θ)}.

on the center manifold C0, and we have

(24) W (t, θ) =W (z(t), z̄(t), θ),

where

(25) W (z(t), z̄(t), θ) =W (z, z̄) =W20
z2

2
+W11zz̄ +W02

z̄2

2
+ · · · ,

and z and z̄ are local coordinates for center manifold C0 in the direction of q∗

and q̄∗. Noting that W is also real if ut is real, we consider only real solutions.
For solutions ut ∈ C0 of (15),

ż(t) = iω0τkz + q̄∗(θ)f(0,W (z, z̄, θ) + 2Re{zq(θ)}
def
= iω0τkz + q̄∗(0)f0.

That is

ż(t) = iω0τkz + g(z, z̄),

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · · .
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Hence, we have

g(z, z̄) = q̄∗(0)f0(z, z̄) = f(0, yt) = K20z
2 +K11zz̄ +K02z̄

2 +K21z
2z̄ + h.o.t.,

where

K20 = − D̄τk
(

1 + kβe−iω0τk + α2α∗ − kββ∗e−iω0τk
)

,

K11 = − 2D̄τk
(

1 + kRe{βe−iω0τk}+ |α|2α∗ − kβ∗Re{βe−iω0τk}
)

,

K02 = − D̄τk
(

1 + kβ̄eiω0τk + ᾱ2α∗ − kβ̄β∗eiω0τk
)

,

K21 = − D̄τk

{

W
(1)
20 (0) + 2W

(1)
11 (0) + k

[

1

2
β̄W

(1)
20 (0)eiω0τk +

1

2
W

(3)
20 (−1)

+βW
(1)
11 (0)e−iω0τk +W

(3)
11 (−1)

]

+ α∗

[

ᾱW
(1)
20 (0) + 2αW

(1)
11 (0)

]

+ kβ∗

[

1

2
β̄W

(1)
20 (0)eiω0τk +

1

2
W

(3)
20 (−1) + βW

(1)
11 (0)e−iω0τk +W

(3)
11 (−1)

]

}

.

Then we obtain

g20 = 2K20, g11 = K11, g02 = 2K02, g21 = 2K21.

For unknown W
(1)
20 (0),W

(3)
20 (−1),W

(1)
11 (0),W

(3)
11 (−1) in g21, we still need to

compute them.
From (22), (23), we have
(26)

W
′

=

{

AW − 2Re{q̄∗(0)f̄q(θ)}, −1 ≤ θ < 0,
AW − 2Re{q̄∗(0)f̄q(θ)} + f̄ , θ = 0

def
= AW +H(z, z̄, θ),

where

(27) H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · .

Comparing the coefficients, we obtain

(28) (AW − 2iτkω0)W20 = −H20(θ),

(29) AW11(θ) = −H11(θ),

. . . . . . . . . .

And we know that for θ ∈ [−1, 0),

(30) H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ).

Comparing the coefficients of (30) with (27) gives that

(31) H20(θ) = −g20q(θ) − ḡ02q̄(θ),

(32) H11(θ) = −g11q(θ) − ḡ11q̄(θ).

From (28), (31) and the definition of A, we get

(33) Ẇ20(θ) = 2iω0τkW20(θ) + g20q(θ) + ¯g02q̄(θ).
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Noting that q(θ) = q(0)eiω0τkθ, we have

(34) W20(θ) =
ig20

ω0τk
q(0)eiω0τkθ +

iḡ02

3ω0τk
q̄(0)e−iω0τkθ + E1e

2iω0τkθ,

where E1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 ) ∈ R3 is a constant vector.

Similarly, from (29), (32) and the definition of A, we have

(35) Ẇ11(θ) = g11q(θ) + ¯g11q̄(θ),

(36) W11(θ) = −
ig11

ω0τk
q(0)eiω0τkθ +

iḡ11

ω0τk
q̄(0)e−iω0τkθ + E2,

where E2 = (E
(1)
2 , E

(2)
2 , E

(3)
2 ) ∈ R3 is a constant vector.

In what follows, we shall seek appropriate E1,E2 in (34), (36), respectively.
It follows from the definition of A and (31), (32) that

(37)

∫ 0

−1

dη(θ)W20(θ) = 2iω0τkW20(0)−H20(0)

and

(38)

∫ 0

−1

dη(θ)W11(θ) = −H11(0),

where η(θ) = η(0, θ).
From (28), we have

(39) H20(0) = −g20q(0)− ¯g02q̄(0) + 2τk(H1, H2, H3)
T ,

(40) H11(0) = −g11q(0)− ¯g11(0)q̄(0) + 2τk(P1, P2, P3)
T ,

where

H1 = − 1− kβe−iω0τk , H2 = α2, H3 = kβe−iω0τk ,

P1 = − 1− kRe{βe−iω0τk}, P2 = |α|2, P3 = kRe{β̄e−iω0τk}.

Noting that
(

iω0τkI −

∫ 0

−1

eiω0τkθdη(θ)

)

q(0) = 0,

(

−iω0τkI −

∫ 0

−1

e−iω0τkθdη(θ)

)

q̄(0) = 0

and substituting (34) and (39) into (37), we have
(

2iω0τkI −

∫ 0

−1

e2iω0τkθdη(θ)

)

E1 = 2τk(H1, H2, H3)
T .

That is,




2iω0 − (a1 − 2s∗1 − ε) −ε −ks∗1e
−2iω0τk

−ε 2iω0 − (a2 − 2s∗2 − ε) 0
0 0 2iω0 − (ks∗1 − b− c)e−2iω0τk



× E1

= 2(H1, H2, H3)
T .
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It follows that

(41) E
(1)
1 =

∆11

∆1
, E

(2)
1 =

∆12

∆1
, E

(2)
1 =

∆13

∆1
,

where

∆1 = det





2iω0 − (a1 − 2s∗1 − ε) −ε −ks∗1e
−2iω0τk

−ε 2iω0 − (a2 − 2s∗2 − ε) 0
0 0 2iω0 − (ks∗1 − b− c)e−2iω0τk



,

∆11 = 2det





H1 −ε −ks∗1e
−2iω0τk

H2 2iω0 − (a2 − 2s∗2 − ε) 0
H3 0 2iω0 − (ks∗1 − b− c)e−2iω0τk



 ,

∆12 = 2det





2iω0 − (a1 − 2s∗1 − ε) H1 −ks∗1e
−2iω0τk

−ε H2 0
0 H3 2iω0 − (ks∗1 − b− c)e−2iω0τk



 ,

∆13 = 2det





2iω0 − (a1 − 2s∗1 − ε) −ε H1

−ε 2iω0 − (a2 − 2s∗2 − ε) H2

0 0 H3



 .

Similarly, substituting (35) and (40) into (38), we have
(∫ 0

−1

dη(θ)

)

E2 = 2τk(P1, P2, P3)
T .

That is




a1 − 2s∗1 − ε ε −ks∗1
ε a2 − 2s∗2 − ε 0
0 0 ks∗1 − b − c



E2 = 2(−P1,−P2,−P3)
T .

It follows that

(42) E
(1)
2 =

∆21

∆2
, E

(2)
2 =

∆22

∆2
, E

(2)
2 =

∆23

∆2
,

where

∆2 = det





a1 − 2s∗1 − ε ε −ks∗1
ε a2 − 2s∗2 − ε 0
0 0 ks∗1 − b− c



 ,

∆21 = 2det





−P1 ε −ks∗1
−P2 a2 − 2s∗2 − ε 0
−P3 0 ks∗1 − b− c



 ,

∆22 = 2det





a1 − 2s∗1 − ε −P1 −ks∗1
ε −P2 0
0 −P3 ks∗1 − b− c



 ,

∆23 = 2det





a1 − 2s∗1 − ε ε −P1

ε a2 − 2s∗2 − ε −P2

0 0 −P3



 .
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From (34), (36), (41), (42), we can calculate g21 and derive the following values:

c1(0) =
i

2ω0τk

(

g20g11 − 2|g11|
2 −

|g02|
2

3

)

+
g21

2
,

µ2 = −
Re{c1(0)}

Re{λ′(τk}
,

β2 = 2Re(c1(0)),

T2 =−
Im{c1(0)}+ µ2Im{λ

′

(τk)}

ω0τk
.

These formulaes give a description of the Hopf bifurcation periodic solutions of
(15) at τ = τk, (k = 0, 1, 2, 3, . . .) on the center manifold. From the discussion
above, we have the following result:

0 100 200 300 400 500 600 700 800
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

t

s
1
(t
)

Figure 1

Theorem 3.1. The periodic solution is supercritical (subcritical) if µ2 > 0
(µ2 < 0); the bifurcating periodic solutions are orbitally asymptotically stable

with asymptotical phase (unstable) if β2 < 0 (β2 > 0); the periodic of the

bifurcating periodic solutions increase (decrease) if T2 > 0 (T2 < 0).

Remark 3.2. A τT -periodic solution of (15) is a T -periodic solution of (4).

4. Numerical examples

In this section, we present some numerical results of the system (2) to verify
the analytical predictions obtained in the previous section. From Section 3,
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we may determine the direction of a Hopf bifurcation and the stability of the
bifurcation periodic solutions. Let us consider the following system:

(43)







ṡ1 = −0.5s1I1(t− τ) + s1(0.3− s1) + 0.5(s2 − s1),
ṡ2 = s2(0.5− s2) + 0.5(s1 − s2),

İ1 = 0.5s1I1(t− τ) − 0.2I1(t− τ) − 0.4I1(t− τ)

which has a boundary equilibrium E0(s
∗

1, s
∗

2, I
∗

1 ) ≈ (0.3632, 0.4262, 0) and sat-
isfies the conditions indicated in Theorem 2.2. When τ = 0, the boundary
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equilibrium E0 ≈ (0.3632, 0.4262, 0) is asymptotically stable. Take k = 0 for
example, by some complicated computation by means of Matlab 7.0, we get
ω0 ≈ 1.0328, τ0 ≈ 3.7544, λ

′

(τ0) ≈ 0.3345− 6.6612i. Thus we can calculate the
following values: c1(0) ≈ −1.0531− 3.4312i, µ2 ≈ 0.4355, β2 ≈ −4.0564, T2 ≈
5.4005. Furthermore, it follows that µ2 > 0 and β2 < 0. Thus, the boundary
equilibrium E0 ≈ (0.3632, 0.4262, 0) is stable when τ < τ0 as is illustrated by
the computer simulations (see Fig.1-7). When τ passes through the critical
value τ0, the boundary equilibrium E0 ≈ (0.3632, 0.4262, 0) loses its stability
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and a Hopf bifurcation occurs, i.e., a family of periodic solutions bifurcations
from the boundary equilibrium E0 ≈ (0.3632, 0.4262, 0). Since µ2 > 0 and
β2 < 0, the direction of the Hopf bifurcation is τ > τ0, and these bifurcat-
ing periodic solutions from E0 ≈ (0.3632, 0.4262, 0) at τ0 are stable, which are
depicted in Fig.8-14.

0.2
0.3

0.4
0.5

0.6
0.7

0.35

0.4

0.45

0.5

0.55
-1

-0.5

0

0.5

1

s1(t)
s2(t)

I 1
(t
)

Figure 7

Fig.1-Fig.7 Behavior and phase portrait of the system (43) with τ = 3.7 <
τ0 ≈ 3.7544. The boundary equilibrium E0 ≈ (0.3632, 0.4262, 0) is asymptoti-
cally stable. The initial value is (0.5,0.5,0.5).

Fig.8-Fig.14 Behavior and phase portrait of the system (43) with τ = 4 >
τ0 ≈ 3.7544. Hopf bifurcation occurs from the boundary equilibrium E0 ≈
(0.3632, 0.4262, 0). The initial value is (0.5,0.5,0.5).
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5. Biological explanations and conclusions

5.1. Biological explanations

From the analysis in Section 2, we know that under the conditions (H1)-(H3),
then the boundary equilibrium E0(s

∗

1, s
∗

2, 0) of the system (2) is asymptotically
stable for all τ ∈ [0, τ0). This shows that, in this case, the susceptible numbers
in place 1, the susceptible numbers in place 2 and the infective numbers in
place 1 will tend to stabilization, that is, the susceptible numbers in place 1,
the susceptible numbers in place 2 and the infective numbers in place 1 will
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tend to s∗1, s
∗

2, 0, respectively, and this fact is not influenced by the delay τ ∈
[0, τ0). When τ crosses through the critical value τ0, the boundary equilibrium
E0(s

∗

1, s
∗

2, 0) of the system (2) loses stability and a Hopf bifurcation occurs.
This shows that the susceptible numbers in place 1, the susceptible numbers in
place 2 and the infective numbers in place 1 keep in an oscillatory mode near
the boundary equilibrium E0(s

∗

1, s
∗

2, 0).

5.2. Conclusions
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In this paper, we have investigated local stability of the boundary equilib-
rium E0(s

∗

1, s
∗

2, 0) and local Hopf bifurcation in delayed epidemic model with
diffusion. We have showed that if the conditions (H1)-(H3) hold, the bound-
ary equilibrium E0(s

∗

1, s
∗

2, 0) of the system (2) is asymptotically stable for all
τ ∈ [0, τ0). As the delay τ increases, the boundary equilibrium loses its sta-
bility and a sequence of Hopf bifurcations occur at the boundary equilibrium
E0(s

∗

1, s
∗

2, 0), i.e., a family of periodic orbits bifurcates from the the positive
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equilibrium E0(s
∗

1, s
∗

2, 0). At last, the direction of Hopf bifurcation and the sta-
bility of the bifurcating periodic orbits are discussed by applying the normal
form theory and the center manifold theorem. A numerical example verifying
our theoretical results is also correct.
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