• Title/Summary/Keyword: sputtering gun

Search Result 147, Processing Time 0.024 seconds

Study on target erosion in rocking magnet sputtering system

  • Lee, Do-Sun;Kwon, Ui-Hui;Lee, Won-Jong
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.245-251
    • /
    • 2005
  • A high performance dual rocking magnet sputtering gun has been developed. The rocking magnet sputtering gun introduces full-face erosion by rapidly rocking the magnet in the region where the high plasma density is maintained. The newly developed dual rocking magnet sputtering gun whose target utilization was 77 percent achieved high performance in quality in the view of target utilization and target life-time comparing to the existing magnetron sputtering gun. The PIC-MCC target erosion simulation has been performed simultaneously. Comparing experimental target erosion profiles with simulated target erosion profiles, the simulation could estimate the tendency of the target erosion profiles but could not estimate an exact target erosion profile. If the simulation were improved more precisely, the cost reduction for the development of the multiple rocking magnet sputtering gun would be expected.

Development of magnetron sputtering system for Al thin film decomposition with high uniformity (고균일 Al 박막 증착을 위한 magnetron sputtering system 개발)

  • Lee, J.H.;Hwang, D.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.165-169
    • /
    • 2008
  • It is very important to decompose uniformly the metal film in semiconductor devices process. The thickness uniformity of the ITO film by standard magnetron sputtering system are about $\pm4%\sim\pm5%$ and the center of the wafer is more thick than the edge of the wafer. We designed and made the discharge electrode structure and controlled the direction of sputtering materials in magnetron sputtering system. The thickness uniformity are increased to $\pm0.8\sim1.3%$ in 4" wafer using the new sputtering gun in magnetron sputtering system. In wafer to wafer thickness uniformity, $\pm$5.3% are increased to $\pm$1.5% using the new sputtering gun. The thickness uniformity of the Al film are about $\pm$1.0% using the new sputtering gun in magnetron sputtering system.

Formation of Crystalline Copper Thin Films by a Sputtering-assisted Magnetic Field System at Room Temperature

  • Kim, Hyun Sung
    • Applied Science and Convergence Technology
    • /
    • v.27 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • A sputtering-assisted magnetic field system was successfully developed for depositing crystalline Cu thin films at room temperature. This system employs a plasma source and an ion-beam gun with two magnetic field generators, which is covered with sputtering target and the ion-beam gun, simultaneously serving as sputtering plasma and a magnetic field generator. The formation of crystalline Cu thin films at room temperature was dominated by magnetic fields, which was revealed by preliminary experiments. This system can be employed for producing crystalline metal thin films at room temperature.

Characteristics Analysis and Manufacture of Ta2O5 Thin Films Prepared by Dual Ion-beam Sputtering Deposition with Change of Ar/O2Gas Flow Rate of Assist Ion Beam (이중 이온빔 스퍼터링 방식을 사용한 보조 이온빔의 Ar/O2가스 유량에 따른 Ta2O5 박막의 제조 및 특성분석)

  • 윤석규;김회경;김근영;김명진;이형만;이상현;황보창권;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1165-1169
    • /
    • 2003
  • The Ta$_2$O$_{5}$ thin film was deposited on Si-(III) and glass substrate with the change of Ar:O$_2$ gas flow rate in the assist ion gun by the Dual ion-Beam Sputtering (DIBS). As the $O_2$ gas flow of the assist ion gun was decreased, the deposition rate of the thin films decreased. The refractive index was fixed (2.11, at 1550 nm) without regarding to $O_2$ gas flow of the range 3∼12 sccm in assist ion gun. The condition of Ar:O$_2$=3:12 was formatted stoichiometry composition of Ta$_2$O$_{5}$ and the ms roughness was small (0.183 nm).

Twin Target Sputtering System with Ladder Type Magnet Array for Direct Al Cathode Sputtering on Organic Light Emitting Diodes

  • Moon, Jong-Min;Kim, Han-Ki
    • Journal of Information Display
    • /
    • v.8 no.3
    • /
    • pp.5-10
    • /
    • 2007
  • Twin target sputtering (TTS) system with a configuration of vertically parallel facing Al targets and a substrate holder perpendicular to the Al target plane has been designed to realize a direct Al cathode sputtering on organic light emitting diodes (OLEDs). The TTS system has a linear twin target gun with ladder type magnet array for effective and uniform confinement of high density plasma. It is shown that OLEDs with Al cathode deposited by the TTS show a relatvely lower leakage current density $({\sim}1{\times}10^{-5}mA/cm^2)$ at reverse bias of -6V, compared to that ($1{\times}10^{-2}{\sim}10^{-3}$ $mA/cm^2$ at -6V) of OLEDs with Al cathodes grown by conventional DC magnetron sputtering. In addition, it was found that Al cathode films prepared by TTS were amorphous structure with nanocrystallines due to low substrate temperature. This demonstrates that there is no plasma damage caused by the bombardment of energetic particles. This indicates that the TTS system with ladder type magnet array could be useful plasma damage free deposition technique for direct Al cathode sputtering on OLEDs or flexible OLEDs.

A Study on the Amorphization Reaction of the Co-Zr Multilayered Thin Film (Co-Zr 다층 박막의 저온 비정질화에 관한 연구)

  • 안지수;이병일;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.3
    • /
    • pp.170-173
    • /
    • 1996
  • Co-Zr multilayered thin films were prepared by three-gun magnetron sputtering system and low temperature arrorphization was attempted. According to thin film X-ray and cross-sectional TEM analysis, it has been found that zirconium layer is arrorphized by diffusion of cobalt and the amorphization rate at the upper interface is two or three times faster than that at the lower interface of the zirconium layers. This new phenomenon is explained in terms of atomic mixing during sputtering.

  • PDF

Influence of RF Magnetron Sputtering Condition on the ZnO Passivating Layer for Dye-sensitized Solar Cells

  • Rhee, Seung Woo;Choi, Hyung Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.86-89
    • /
    • 2013
  • Dye-sensitized solar cells have a FTO/$TiO_2$/Dye/Electrode/Pt counter electrode structure, yet more than a 10% electron loss occurs at each interface. A passivating layer between the $TiO_2$/FTO glass interface can prevent this loss of electrons. In theory, ZnO has excellent electron collecting capabilities and a 3.4 eV band gap, which suppresses electron mobility. FTO glass was coated with ZnO thin films by RF-magnetron sputtering; each film was deposited under different $O_2$:Ar ratios and RF-gun power. The optical transmittance of the ZnO thin film depends on the thickness and morphology of ZnO. The conversion efficiency was measured with the maximum value of 5.22% at an Ar:$O_2$ ratio of 1:1 and RF-gun power of 80 W, due to effective prevention of the electron recombination into electrolytes.

Cylindrical Hollow Cathode Sputtering Deposition for Uniform Large Area YBCO Thin Film (균질한 대면적 YBCO 박막증착을 위한 실린더형 할로우 캐소드 스퍼터링 증착법)

  • Suh, Jeong-Dae;Han, Seok-Kil;Sung, Gun-Yong;Kang, Kwang-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.67-70
    • /
    • 1999
  • We have fabricated YBa$_2Cu_3O_{7-x}$ thin films by cylindrical hollow cathode sputtering. For 2 inch diameter of MgO (100) substrate, we obtained the zero resistance temperature in the range from 83 K to 86 K and thickness uniformity better than 5 % over the whole area. Also, the average deposition rate was 100nm/h which is higher than 10 times compare to conventional off-axis sputtering method. These results indicate that cylindrical hollow cathode sputtering seems to have unique capabilities for high rate and homogeneous deposition of large area thin film.

  • PDF

High speed deposition technique of YSZ film for the superconducting tape (고온초전도테이프 제작을 위한 YSZ 박막의 고속증착방법)

  • Kim Ho-Sup;Shi Dongqui;Chung Jun-Ki;Ko Rock-Kil;Ha Hong-Soo;Song Kyu-Jeong;Youm Do-Jun;Park Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.27-32
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of /< superconducting layer>//. The buffer layer consists of multi layer, and the architecture most widely used in RABiTS approach is CeO$_2$(cap layer)/YSZ(diffusion barrier layer)/CeO$_2$(seed layer). Evaporation technique is used for the CeO$_2$ layer and DC reactive sputtering technique is used for the YSZ layer, A chamber was set up specially for DC reactive sputtering, Detailed features are as following. A separator divided the chamber into two halves a sputtering chamber and a reaction chamber. The argon gas for sputtering target elements flows out of the cap of sputtering gun, and water vapor for reaction with depositing species spouts near the substrate. Turbo pump is connected with reaction chamber. High speed deposition of YSZ film could be achieved in the chamber. Detailed deposition conditions (temperature and partial pressure of reaction gas) were investigated for the rapid growth of high quality YSZ film.

Effects of rapid thermal annealing and bias sputtering on the structure and properties of ZnO:Al films deposited by DC magnetron sputtering (Bias를 인가한 DC magnetron sputtering 법으로 증착된 ZnO:Al 박막의 구조적 특성과 RTP의 annealing에 따른 영향)

  • Park, Kyeong-Seok;Lee, Kyu-Seok;Lee, Sung-Wook;Park, Min-Woo;Kwak, Dong-Joo;Lim, Dong-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.500-501
    • /
    • 2005
  • Aluminum doped zinc oxide films (ZnO:Al) were deposited on glass substrate by DC magnetron sputtering from a ZnO target mixed with 2 wt% $Al_2O_3$. The effects of substrate bias on the electrical properties and film structure were studied. Films deposited with positive bias have been annealed at $600^{\circ}C$ using rapid thermal anneal (RTA) process. The effects of RTA on the evolution of film microstructure are to be also studied using X-ray diffraction, transmission electron microscopy, and atomic force microscopy. Positive bias sputtering may induce lattice defects caused by electron bombardments during deposition. The as-deposited film microstructure evolves from the film with high defect density to more stable film condition. The electrical properties of the films after RTA process were also studied and the results were correlated with the evolution of film microstructures.

  • PDF