Twin Target Sputtering System with Ladder Type Magnet Array for Direct Al Cathode Sputtering on Organic Light Emitting Diodes

  • Moon, Jong-Min (Department of Information and Nano Materials Engineering, Kumoh National Institute of Technology (KIT), Student Member, KIDS) ;
  • Kim, Han-Ki (Department of Information and Nano Materials Engineering, Kumoh National Institute of Technology (KIT), Member, KIDS)
  • Published : 2007.09.30

Abstract

Twin target sputtering (TTS) system with a configuration of vertically parallel facing Al targets and a substrate holder perpendicular to the Al target plane has been designed to realize a direct Al cathode sputtering on organic light emitting diodes (OLEDs). The TTS system has a linear twin target gun with ladder type magnet array for effective and uniform confinement of high density plasma. It is shown that OLEDs with Al cathode deposited by the TTS show a relatvely lower leakage current density $({\sim}1{\times}10^{-5}mA/cm^2)$ at reverse bias of -6V, compared to that ($1{\times}10^{-2}{\sim}10^{-3}$ $mA/cm^2$ at -6V) of OLEDs with Al cathodes grown by conventional DC magnetron sputtering. In addition, it was found that Al cathode films prepared by TTS were amorphous structure with nanocrystallines due to low substrate temperature. This demonstrates that there is no plasma damage caused by the bombardment of energetic particles. This indicates that the TTS system with ladder type magnet array could be useful plasma damage free deposition technique for direct Al cathode sputtering on OLEDs or flexible OLEDs.

Keywords

References

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Bums, and A. B. Holmes, Nature 347,539 (1990) https://doi.org/10.1038/347539a0
  2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987) https://doi.org/10.1063/1.98799
  3. N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Homes, Nature 365, 628 (1993) https://doi.org/10.1038/365628a0
  4. P. E. Burrows, G. Gu, V. Bulovic, S. R. Forrest, and M. E. Thompson, IEEE Trans. Electron Devices 44,1188 (1997) https://doi.org/10.1109/16.605453
  5. M. StoBel, J. Staudigel, F. Steuber, J. BIassing, J. Simmerer, A. Winnacker, H. Neuner, D. Metzdorf, H.-H. Johannes, and W. Kowalsky, Synthetic Metals 111, 19 (2000) https://doi.org/10.1016/S0379-6779(99)00406-3
  6. E. I. Haskai, A. Curioni, P. F. Seidler, and W. Andreoni, Appl. Phys. Lett. 71, 1151 (1997) https://doi.org/10.1063/1.119850
  7. L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70, 152 (1997) https://doi.org/10.1063/1.118344
  8. L. S. Liao, L. S. Hung, W. C. Chan, X. M. Ding, T. K. Sham, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 75, 1619 (1999) https://doi.org/10.1063/1.124773
  9. Han-Ki Kim, D.-G. Kim, K.-S. Lee, M.-S. Huh, S. H. Jeong, K. I. Kim, H. Kim, D. W. Han, and J.H. Kwon, Appl. Phys. Lett. 85, 4295 (2004) https://doi.org/10.1063/1.1815394
  10. Han-Ki Kim, Sang-Woo Kim, Kyu-Sung Lee, and K. H. Kim, Appl. Phys. Lett. 88, 083513 (2006) https://doi.org/10.1063/1.2178483
  11. Han-Ki Kim, D.-G. Kim, K.-S. Lee, M.-S. Huh, S. H. Jeong, K. I. Kim, and Tae-Yeon Seong, Appl. Phys. Lett. 86, 183503 (2005) https://doi.org/10.1063/1.1923182
  12. P. F. Carda, R. S. McLean, M. H. Reilly, L. J. Pillione, and R. F. Messier, J. Vac. Sci. Technol.A 21, 745 (2003) https://doi.org/10.1116/1.1566789