DOI QR코드

DOI QR Code

Influence of RF Magnetron Sputtering Condition on the ZnO Passivating Layer for Dye-sensitized Solar Cells

  • Received : 2012.09.05
  • Accepted : 2013.02.12
  • Published : 2013.04.25

Abstract

Dye-sensitized solar cells have a FTO/$TiO_2$/Dye/Electrode/Pt counter electrode structure, yet more than a 10% electron loss occurs at each interface. A passivating layer between the $TiO_2$/FTO glass interface can prevent this loss of electrons. In theory, ZnO has excellent electron collecting capabilities and a 3.4 eV band gap, which suppresses electron mobility. FTO glass was coated with ZnO thin films by RF-magnetron sputtering; each film was deposited under different $O_2$:Ar ratios and RF-gun power. The optical transmittance of the ZnO thin film depends on the thickness and morphology of ZnO. The conversion efficiency was measured with the maximum value of 5.22% at an Ar:$O_2$ ratio of 1:1 and RF-gun power of 80 W, due to effective prevention of the electron recombination into electrolytes.

Keywords

References

  1. B. Oregan, M. Gratzel. Nature 353, 737 (1991). [DOI: http:// dx.doi.org/10.1038/353737a0]
  2. W. J. Jeong, G. C. Park, Sol. Energy Mater. Sol. Cells 65, 37 (2001). [DOI: http://dx.doi.org/10.1016/S0927-0248(00)00075-1]
  3. D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles and I. Riess, J. Phys. Chem. B. 104, 2053 (2000). [DOI: http://dx.doi.org/10.1021/jp993187t]
  4. S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, J. Phys. Chem. B. 107, 8607 (2003). [DOI: http://dx.doi.org/10.1021/jp034773w]
  5. C. S. Karthikeyan, M. Thelakkat, and M. Willert-Porada, Thin Solid Films. 187, 511-512 (2006). [DOI: http://www.sciencedirect.com/science/article/pii/S0040609005024429]
  6. K. H. Lee, Nam. I. Cho, E. J. Yun H. G. Nam, App. Surf. Sci. 256, 4241-4245 (2010). [DOI: http://dx.doi.org/10.1016/ j.apsusc.2010.02.009]
  7. L. Zhengwei, W. Gao, Materials Letters 58, 1363-1370 (2004). [DOI: http://dx.doi.org/10.1016/j.matlet.2003.09.028]
  8. Y. S. Jin, K. H. Kim, and H. W. Choi, J. Korean. Phys. Soc, 57, 1049- 1053 (2010). [DOI: http://dx.doi.org/10.3938/jkps.57.1049]
  9. S. J. Kang, J. Y. Choi, D. H. Chang and Y. S. Yoon, J. Korean. Phys. Soc, 47, 589-594 (2005).
  10. H. W. Kim, N. H. Kim,. Mater. Sci. Eng. B 103, 297-302 (2003). [DOI: http://dx.doi.org/10.1016/S0921-5107(03)00281-2]
  11. D. S. Park, J. H. Kim, T. S. Jeong, K. J. Hong and C. J. Youn, J. Korean. Phys. Soc, 53, 3250-3254 (2008). [DOI: http://dx.doi.org/10.3938/jkps.53.3250].

Cited by

  1. Manufacturing of Cu Repair Coating Material Using the Kinetic Spray Process and Changes in the Microstructures and Properties by Heat Treatment vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.349
  2. Resistive behavior of Ni thin film on a cylindrical PET monofilament with temperature for wearable computing devices vol.259, 2017, https://doi.org/10.1016/j.sna.2017.03.022
  3. Tailoring of microstructure and optoelectronic properties of Aluminum doped Zinc Oxide changing gun tilt vol.63, 2017, https://doi.org/10.1016/j.mssp.2016.12.043
  4. Planar microcrystalline ZnO/Si heterojunction photodetector with Al electrodes vol.26, pp.8, 2015, https://doi.org/10.1007/s10854-015-3187-9