• Title/Summary/Keyword: sphingosine 1-phosphate

Search Result 59, Processing Time 0.026 seconds

Fumonisin B1 Induces Apoptosis in Sphingosine 1-Phosphate Lyase-null F9 Cells through Increase of Sphingolipids Levels

  • Pak, Seon-Mi;Park, Nam-Young;Park, Myung-Yong;Kim, Wan-Jong;Lee, Jong-Hwa;Oh, Sei-Kwan;Yoo, Hwan-Soo;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.95-99
    • /
    • 2008
  • Apoptosis is essential for a variety of pathophysiological progress. Apoptosis induction by various agents changes cellular morphology, DNA content and lipid membrane composition. Recently, sphingosine 1-phosphate (S1P) is avidly released from not only platelets and erythrocytes but vascular endothelium. Here we established S1P releasing cells by deleting S1P lyase (F9-12 cells). We observed apoptosis induction by the treatment of fumonisin B1 (FB1) in F9-12 cells but not in F9 wild-type cells. We measured high amounts of accumulated S1P and dihydroS1P (DHS1P) in FB1-induced apoptotic F9-12 cells. We also showed DHS1P release in an early stage of the apoptosis induction by FB1 but not by phorbol 12-myristate 13-acetate (PMA)-induced apoptosis, suggesting differential apoptotic processes.

Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery

  • Park, Soo-Jin;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.80-90
    • /
    • 2017
  • Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, $S1P_{1-5}$. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn's disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications.

Ceramide and Sphingosine 1-Phosphate in Liver Diseases

  • Park, Woo-Jae;Song, Jae-Hwi;Kim, Goon-Tae;Park, Tae-Sik
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.419-430
    • /
    • 2020
  • The liver is an important organ in the regulation of glucose and lipid metabolism. It is responsible for systemic energy homeostasis. When energy need exceeds the storage capacity in the liver, fatty acids are shunted into nonoxidative sphingolipid biosynthesis, which increases the level of cellular ceramides. Accumulation of ceramides alters substrate utilization from glucose to lipids, activates triglyceride storage, and results in the development of both insulin resistance and hepatosteatosis, increasing the likelihood of major metabolic diseases. Another sphingolipid metabolite, sphingosine 1-phosphate (S1P) is a bioactive signaling molecule that acts via S1P-specific G protein coupled receptors. It regulates many cellular and physiological events. Since an increase in plasma S1P is associated with obesity, it seems reasonable that recent studies have provided evidence that S1P is linked to lipid pathophysiology, including hepatosteatosis and fibrosis. Herein, we review recent findings on ceramides and S1P in obesity-mediated liver diseases and the therapeutic potential of these sphingolipid metabolites.

Shigella flexneri Inhibits Intestinal Inflammation by Modulation of Host Sphingosine-1-Phosphate in Mice

  • Kim, Young-In;Yang, Jin-Young;Ko, Hyun-Jeong;Kweon, Mi-Na;Chang, Sun-Young
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • Infection with invasive Shigella species results in intestinal inflammation in humans but no symptoms in adult mice. To investigate why adult mice are resistant to invasive shigellae, 6~8-week-old mice were infected orally with S. flexneri 5a. Shigellae successfully colonized the small and large intestines. Mild cell death was seen but no inflammation. The infected bacteria were cleared 24 hours later. Microarray analysis of infected intestinal tissue showed that several genes that are involved with the sphingosine-1-phosphate (S1P) signaling pathway, a lipid mediator which mediates immune responses, were altered significantly. Shigella infection of a human intestinal cell line modulated host S1P-related genes to reduce S1P levels. In addition, co-administration of S1P with shigellae could induce inflammatory responses in the gut. Here we propose that Shigella species have evasion mechanisms that dampen host inflammatory responses by lowering host S1P levels in the gut of adult mice.

Sphingosine Kinase Assay System with Fluorescent Detection in High Performance Liquid Chromatography

  • Jin, You-Xun;Yoo, Hwan-Soo;Kihara, Akio;Choi, Chang-Hwan;Oh, Seik-Wan;Moon, Dong-Cheul;Igarashi, Yasuyuki;Lee, Yong-Moon
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1049-1054
    • /
    • 2006
  • Activation of Sphingosine kinase (Sphk) increases a bioactive lipid, sphingosine 1-phosphate (S1P) and has been observed in a variety of cancer cells. Therefore, inhibition of Sphk activity was an important target for the development of anticancer drugs. As a searching tool for Sphk inhibitor, we developed fluorescent Sphk activity assay combined with high performance liquid chromatography (HPLC). Previously we established murine teraticarcinoma mutant F9-12 cells which lack S1P lyase and stably express Sphk1. By using F9-12 cells, optimal assay conditions were established as follows; $100\;{\mu}M\;of\;C_{17}-Sph\;and\;30\;{\mu}g$ protein of F9-12 cells lysate in 20 min. Sphingosine analog $C_{17}-Sph$ was efficiently phosphorylated by Sphk activity ($K_{m}:67.08\;{\mu}M,\;V_{max}\;:1507.5\;pmol/min/mg$). New product $C_{17}-S1P$ was separated from S1P in reversed-phase HPLC. In optimized conditions, 300 nM of phorbol 12-myristate 13-acetate (PMA) increased Sphk activity approximately twice while $20\;{\mu}M$ of N,N-dimethylsphingosine (DMS) reduced 70% of Sphk activity in F9-12 cells lysate. In conclusion, we established non-radioactive but convenient Sphk assay system by using HPLC and F9-12 cells.

Role of Sphingolipids and Metabolizing Enzymes in Hematological Malignancies

  • Kitatani, Kazuyuki;Taniguchi, Makoto;Okazaki, Toshiro
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.482-495
    • /
    • 2015
  • Sphingolipids such as ceramide, sphingosine-1-phosphate and sphingomyelin have been emerging as bioactive lipids since ceramide was reported to play a role in human leukemia HL-60 cell differentiation and death. Recently, it is well-known that ceramide acts as an inducer of cell death, that sphingomyelin works as a regulator for microdomain function of the cell membrane, and that sphingosine-1-phosphate plays a role in cell survival/proliferation. The lipids are metabolized by the specific enzymes, and each metabolite could be again returned to the original form by the reverse action of the different enzyme or after a long journey of many metabolizing/synthesizing pathways. In addition, the metabolites may serve as reciprocal biomodulators like the rheostat between ceramide and sphingosine-1-phosphate. Therefore, the change of lipid amount in the cells, the subcellular localization and the downstream signal in a specific subcellular organelle should be clarified to understand the pathobiological significance of sphingolipids when extracellular stimulation induces a diverse of cell functions such as cell death, proliferation and migration. In this review, we focus on how sphingolipids and their metabolizing enzymes cooperatively exert their function in proliferation, migration, autophagy and death of hematopoetic cells, and discuss the way developing a novel therapeutic device through the regulation of sphingolipids for effectively inhibiting cell proliferation and inducing cell death in hematological malignancies such as leukemia, malignant lymphoma and multiple myeloma.

A Sphingosine Kinase-1 Inhibitor, SKI-II, Induces Growth Inhibition and Apoptosis in Human Gastric Cancer Cells

  • Li, Pei-Hua;Wu, Jin-Xia;Zheng, Jun-Nian;Pei, Dong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10381-10385
    • /
    • 2015
  • SKI-II has been reported as an inhibitor of sphingosine kinase 1 and has been extensively used to prove the involvement of sphingosine kinase and sphingosine-1-phosphate (Sphk1) in cellular processes. In the current study, we investigated the effects of SKI-II and its potential mechanisms in human gastric cancer SGC7901 cells. After treatment with SKI-II, cell growth, cell cycle distribution, apoptosis, expression of Sphk1, NF-${\kappa}B$, Bcl-2, Bax and p27 were assessed by MTT assay, flow cytometry, electron microscopy, immunocytochemistry and Western-blot assay, respectively. Our results showed that SKI-II markedly inhibited SGC7901 cell survival in a dose-dependent manner, reduced cell proliferation with accumulation of cells in the G0/G1 phase and induced apoptosis in the tumor cells. Furthermore, Western blotting and immunocytochemistry showed that the expression of p27 and Bax was increased significantly, but the expression of NF-${\kappa}B$, Bcl-2 and Sphk1 decreased by different degrees. These results indicate that SKI-II induced cell growth arrest and apoptosis. The increased apoptotic sensitivity of SGC7901 was correlated with NF-${\kappa}B$ or Bcl-2/Bax activation.

Sphingolipid Metabolic Changes during Chiral C2-Ceramides Induced Apoptosis in Human Leukemia Cells

  • Baek, Mi-Young;Yoo, Hwan-Soo;Kazuyasu Nakaya;Moon, Dong-Cheul;Lee, Yong-Moon
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.144-149
    • /
    • 2001
  • N-acetylsphingosine (C2-ceramide) is a synthetic water-soluble ceramide mimicking the activity of natural ceramides. By fixing chiral conformation on carbon numbers 2 and 3 in the ceramide structure, four chiral C2-ceramides naming d-erythro-, I-erythro-, d-threo-and 1-three C2-ceramide were synthesized. We have investigated the chiral effects of these C2-ceramides on the sphingolipid metabolism, particularly on both the sphingolipid bio- synthetic pathway and on the degradation pathway. In both HL-60 and U937 cells, the chiral C2-ceramide ($10{\mu}\textrm{m}$) showed sphingosine accumulation monitored fluoromatrically by a high performance liquid chromatographic separation of the sphingoid bases. Most importantly, in HL-60 cells, l-erythro C2-ceramide induced a 50 fold increase in sphingosine as compared to the control, while l-threo C2-ceramide exhibited a minimal 7-fold in-crease. In contrast, sphinganine, another sphingoid base, showed less accumulation by any chiral C2-ceramide tested under the same conditions. These results suggested that chiral C2-ceramide primarilyacts on the sphingolipid degradation pathway rather than on the sphingolipid biosynthetic route. The strong $C_0/G_1$ phase arrest in the cell cycle by treatment of I-erythro C2-ceramide indicates that the blockade of the sphingolipid degradation pathway might be concomitantly involved in the dysfunction of the cell cycle. On the other hand, the fact that all chiral C2-ceramides tested failed to inhibit the activity of sphingosine kinase acting on the removal of sphingosine by producing sphingosine-1 -phosphate demonstrates that chiral C2- ceramides may increase sphingosine by activating various ceramidases by which natural ceramides are divided into sphingosine and free fatty acids. However, the precise steps involved in this interaction are still unknown.

  • PDF

The Role of Sphingosine-1-phosphate in Melanogenesis

  • Kim, Dong-Seok;Hwang, Eui-Soo;Lee, Jai-Eun;Kwon, Sun-Bang;Park, Kyoung-Chan
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.90.1-90.1
    • /
    • 2003
  • This study shows that sphingosine-1-phosphate (S1P) significantly inhibits melanin synthesis in a concentration-dependent manner, and that the activity of tyrosinase was also reduced in S1P-treated cells. In contrast, a specific extracellular signal-regulated protein kinase (ERK) pathway inhibitor, PD98059 increased tyrosinase activity and melanin production, and PD98059 restored the reduced tyrosinase activity and pigmentation induced by SIP. We also found that S1P induces the sustained activation of ERK and the subsequent degradation of microphthalmia-associated transcription factor (MITF), which plays a key role in melanogenesis. (omitted)

  • PDF

Distinct Effects of Lysophospholipids on Membrane Potential in C6 Glioma Cells

  • Lee Yun-Kyung;Im Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.14 no.1
    • /
    • pp.25-29
    • /
    • 2006
  • We tested effects of bioactive lysophospholipids including lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), sphingosylphosphorylcholine (SPC), and sphingosine I-phosphate (S1P) on membrane potential in C6 glioma cells to understand action mechanism of the lysophospholipids. Membrane potential was estimated by measuring fluorescence change of DiBAC-loaded glioma cells. LPA largely increased membrane potential and the increase was gradually diminished. LPC also increased the membrane potential, however, the increase sustained. SPC induced smaller increase of membrane potential than LPC. SIP was not able to change the membrane potential. We tested effects of suramin and pertussis toxin on lysophospholipid-induced membrane potential increase. However, there wasn't any effect. The membrane potential increase was partially diminished in $Na^+$-free media, suggesting $Na^+$ influx as a component of membrane potential changes. Thus, involvement of $Na^+$ influx in the increase of membrane potential by lysophospholipids and independence of suramin-sensitive GPCRs and pertussis toxin-sensitive G proteins are found in this study.