Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.160

Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery  

Park, Soo-Jin (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University)
Im, Dong-Soon (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University)
Publication Information
Biomolecules & Therapeutics / v.25, no.1, 2017 , pp. 80-90 More about this Journal
Abstract
Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, $S1P_{1-5}$. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn's disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications.
Keywords
Sphingosine 1-phosphate; G protein-coupled receptor; Fingolimod; FTY720; Drug discovery; S1P agonist;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kawata, T., Ishizuka, T., Tomura, H., Hisada, T., Dobashi, K., Tsukagoshi, H., Ishiwara, M., Kurose, H., Mori, M. and Okajima, F. (2005) Sphingosine 1-phosphate inhibits migration and RANTES production in human bronchial smooth muscle cells. Biochem. Biophys. Res. Commun. 331, 640-647.   DOI
2 Kihara, Y., Mizuno, H. and Chun, J. (2015) Lysophospholipid receptors in drug discovery. Exp. Cell Res. 333, 171-177.   DOI
3 Adachi, K. and Chiba, K. (2008) FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect. Medicin. Chem. 1, 11-23.
4 An, S., Bleu, T., Huang, W., Hallmark, O. G., Coughlin, S. R. and Goetzl, E. J. (1997) Identification of cDNAs encoding two G proteincoupled receptors for lysosphingolipids. FEBS Lett. 417, 279-282.   DOI
5 Asle-Rousta, M., Oryan, S., Ahmadiani, A. and Rahnema, M. (2013) Activation of sphingosine 1-phosphate receptor-1 by SEW2871 improves cognitive function in Alzheimer's disease model rats. EXCLI J. 12, 449-461.
6 Awad, A. S., Ye, H., Huang, L., Li, L., Foss, F. W., Jr., Macdonald, T. L., Lynch, K. R. and Okusa, M. D. (2006) Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am. J. Physiol. Renal Physiol. 290, F1516-F1524.   DOI
7 Billich, A., Bornancin, F., Devay, P., Mechtcheriakova, D., Urtz, N. and Billich A1, Bornancin, F., Devay, P., Mechtcheriakova, D., Urtz, N. and Baumruker, T. (2003) Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J. Biol. Chem. 278, 47408-47415.   DOI
8 Choi, J. W., Gardell, S. E., Herr, D. R., Rivera, R., Lee, C. W., Noguchi, K., Teo, S. T., Yung, Y. C., Lu, M., Kennedy, G. and Chun, J. (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 ($S1P_1$) modulation. Proc. Natl. Acad. Sci. U.S.A. 108, 751-756.   DOI
9 Chiba, K. (2009) New therapeutic approach for autoimmune diseases by the sphingosine 1-phosphate receptor modulator, fingolimod (FTY720). Yakugaku zasshi 129, 655-665.   DOI
10 Choi, J. W. and Chun, J. (2013) Lysophospholipids and their receptors in the central nervous system. Biochim. Biophys. Acta 1831, 20-32.   DOI
11 Choi, O. H., Kim, J. H. and Kinet, J. P. (1996) Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 380, 634-636.   DOI
12 Cohen, J. A., Arnold, D. L., Comi, G., Bar-Or, A., Gujrathi, S., Hartung, J. P., Cravets, M., Olson, A., Frohna, P. A. and Selmaj, K. W. (2016a) Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 373-381.   DOI
13 Cohen, J. A., Khatri, B., Barkhof, F., Comi, G., Hartung, H. P., Montalban, X., Pelletier, J., Stites, T., Ritter, S., von Rosenstiel, P., Tomic, D. and Kappos, L. (2016b) Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J. Neurol. Neurosurg. Psychiatr. 87, 468-475.   DOI
14 You, S., Piali, L., Kuhn, C., Steiner, B., Sauvaget, V., Valette, F., Clozel, M., Bach, J. F. and Chatenoud, L. (2013) Therapeutic use of a selective $S1P_1$ receptor modulator ponesimod in autoimmune diabetes. PLoS ONE 8, e77296.   DOI
15 Goodemote, K. A., Mattie, M. E., Berger, A. and Spiegel, S. (1995) Involvement of a pertussis toxin-sensitive G protein in the mitogenic signaling pathways of sphingosine 1-phosphate. J. Biol. Chem. 270, 10272-10277.   DOI
16 Gergely, P., Nuesslein-Hildesheim, B., Guerini, D., Brinkmann, V., Traebert, M., Bruns, C., Pan, S., Gray, N. S., Hinterding, K., Cooke, N. G., Groenewegen, A., Vitaliti, A., Sing, T., Luttringer, O., Yang, J., Gardin, A., Wang, N., Crumb, W. J., Jr., Saltzman, M., Rosenberg, M. and Wallstrom, E. (2012) The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br. J. Pharmacol. 167, 1035-1047.   DOI
17 Germinario, E., Peron, S., Toniolo, L., Betto, R., Cencetti, F., Donati, C., Bruni, P. and Danieli-Betto, D. (2012) S1P2 receptor promotes mouse skeletal muscle regeneration. J. Appl. Physiol. 113, 707-713.   DOI
18 Gollmann, G., Neuwirt, H., Tripp, C. H., Mueller, H., Konwalinka, G., Heufler, C., Romani, N. and Tiefenthaler, M. (2008) Sphingosine-1-phosphate receptor type-1 agonism impairs blood dendritic cell chemotaxis and skin dendritic cell migration to lymph nodes under inflammatory conditions. Int. Immunol. 20, 911-923.   DOI
19 Subei, A. M. and Cohen, J. A. (2015) Sphingosine 1-phosphate receptor modulators in multiple sclerosis. CNS Drugs 29, 565-575.   DOI
20 Ble, F. X., Cannet, C., Zurbruegg, S., Gerard, C., Frossard, N., Beckmann, N. and Trifilieff, A. (2009) Activation of the lung $S1P_1$ receptor reduces allergen-induced plasma leakage in mice. Br. J. Pharmacol. 158, 1295-1301.   DOI
21 Takahashi, M., Shimizu, H., Murakami, T., Enosawa, S., Suzuki, C., Takeno, Y., Hakamata, Y., Kudou, S., Izawa, S., Yasue, T. and Kobayashi, E. (2005) A novel immunomodulator KRP-203 combined with cyclosporine prolonged graft survival and abrogated transplant vasculopathy in rat heart allografts. Transplant. Proc. 37, 143-145.   DOI
22 Thangada, S., Khanna, K. M., Blaho, V. A., Oo, M. L., Im, D. S., Guo, C., Lefrancois, L. and Hla, T. (2010) Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. J. Exp. Med. 207, 1475-1483.   DOI
23 Trifilieff, A., Baur, F. and Fozard, J. R. (2009) Role of sphingosine-1-phosphate (S1P) and the $S1P_2$ receptor in allergen-induced, mast cell-dependent contraction of rat lung parenchymal strips. Naunyn Schmiedebergs Arch. Pharmacol. 380, 303-309.   DOI
24 Trifilieff, A. and Fozard, J. R. (2012) Sphingosine-1-phosphate-induced airway hyper-reactivity in rodents is mediated by the sphingosine-1-phosphate type 3 receptor. J. Pharmacol. Exp. Ther. 342, 399-406.   DOI
25 Vaclavkova, A., Chimenti, S., Arenberger, P., Hollo, P., Sator, P. G., Burcklen, M., Stefani, M. and D'Ambrosio, D. (2014) Oral ponesimod in patients with chronic plaque psoriasis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 384, 2036-2045.   DOI
26 Zhu, Z., Fu, Y., Tian, D., Sun, N., Han, W., Chang, G., Dong, Y., Xu, X., Liu, Q., Huang, D. and Shi, F. D. (2015) Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation 132, 1104-1112.   DOI
27 Zhang, G., Yang, L., Kim, G. S., Ryan, K., Lu, S., O'Donnell, R. K., Spokes, K., Shapiro, N., Aird, W. C., Kluk, M. J., Yano, K. and Sanchez, T. (2013) Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood 122, 443-455.   DOI
28 Zhang, Z. Y., Zhang, Z. and Schluesener, H. J. (2009a) FTY720 attenuates lesional interleukin-$17^+$ cell accumulation in rat experimental autoimmune neuritis. Neuropathol. Appl. Neurobiol. 35, 487-495.   DOI
29 Zhang, Z. Y., Zhang, Z., Zug, C., Nuesslein-Hildesheim, B., Leppert, D. and Schluesener, H. J. (2009b) AUY954, a selective $S1P_1$ modulator, prevents experimental autoimmune neuritis. J. Neuroimmunol. 216, 59-65.   DOI
30 Rivera-Nieves, J. (2015) Strategies that target leukocyte traffic in inflammatory bowel diseases: recent developments. Curr. Opin. Gastroenterol. 31, 441-448.   DOI
31 Sammani, S., Moreno-Vinasco, L., Mirzapoiazova, T., Singleton, P. A., Chiang, E. T., Evenoski, C. L., Wang, T., Mathew, B., Husain, A., Moitra, J., Sun, X., Nunez, L., Jacobson, J. R., Dudek, S. M., Natarajan, V. and Garcia, J. G. (2010) Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am. J. Respir. Cell Mol. Biol. 43, 394-402.   DOI
32 Scott, F. L., Clemons, B., Brooks, J., Brahmachary, E., Powell, R., Dedman, H., Desale, H. G., Timony, G. A., Martinborough, E., Rosen, H., Roberts, E., Boehm, M. F. and Peach, R. J. (2016) Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 ($S1P_1$) and receptor-5 ($S1P_5$) agonist with autoimmune disease-modifying activity. Br. J. Pharmacol. 173, 1778-1792.   DOI
33 Van Brocklyn, J. R., Graler, M. H., Bernhardt, G., Hobson, J. P., Lipp, M. and Spiegel, S. (2000) Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95, 2624-2629.
34 van Koppen, C., Meyer zu Heringdorf, M., Laser, K. T., Zhang, C., Jakobs, K. H., Bunemann, M. and Pott, L. (1996) Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J. Biol. Chem. 271, 2082-2087.   DOI
35 Sanchez, T. and Hla, T. (2004) Structural and functional characteristics of S1P receptors. J. Cell. Biochem. 92, 913-922.   DOI
36 Sandborn, W. J., Feagan, B. G., Wolf, D. C., D'Haens, G., Vermeire, S., Hanauer, S. B., Ghosh, S., Smith, H., Cravets, M., Frohna, P. A., Aranda, R., Gujrathi, S. and Olson, A. (2016) Ozanimod induction and maintenance treatment for ulcerative colitis. N. Engl. J. Med. 374, 1754-1762.   DOI
37 Sanna, M. G., Liao, J., Jo, E., Alfonso, C., Ahn, M. Y., Peterson, M. S., Webb, B., Lefebvre, S., Chun, J., Gray, N. and Rosen, H. (2004) Sphingosine 1-phosphate (S1P) receptor subtypes $S1P_1$ and $S1P_3$, respectively, regulate lymphocyte recirculation and heart rate. J. Biol. Chem. 279, 13839-13848.   DOI
38 Pyne, N. J., Tonelli, F., Lim, K. G., Long, J. S., Edwards, J. and Pyne, S. (2012) Sphingosine 1-phosphate signalling in cancer. Biochem. Soc. Trans. 40, 94-100.   DOI
39 Olsson, T., Boster, A., Fernandez, O., Freedman, M. S., Pozzilli, C., Bach, D., Berkani, O., Mueller, M. S., Sidorenko, T., Radue, E. W. and Melanson, M. (2014) Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J. Neurol. Neurosurg. Psychiatr. 85, 1198-1208.   DOI
40 Olivera, A. and Spiegel, S. (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365, 557-560.   DOI
41 Oo, M. L., Thangada, S., Wu, M. T., Liu, C. H., Macdonald, T. L., Lynch, K. R., Lin, C. Y. and Hla, T. (2007) Immunosuppressive and antiangiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J. Biol. Chem. 282, 9082-9089.   DOI
42 Osada, M., Yatomi, Y., Ohmori, T., Ikeda, H. and Ozaki, Y. (2002) Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. Biochem. Biophys. Res. Commun. 299, 483-487.   DOI
43 Oskeritzian, C. A., Hait, N. C., Wedman, P., Chumanevich, A., Kolawole, E. M., Price, M. M., Falanga, Y. T., Harikumar, K. B., Ryan, J. J., Milstien, S., Sabbadini, R. and Spiegel, S. (2015) The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J. Allergy Clin. Immunol. 135, 1008-1018.e1.   DOI
44 Moberly, J. B., Ford, D. M., Zahir, H., Chen, S., Mochizuki, T., Truitt, K. E. and Vollmer, T. L. (2012a) Pharmacological effects of CS-0777, a selective sphingosine 1-phosphate receptor-1 modulator: results from a 12-week, open-label pilot study in multiple sclerosis patients. J. Neuroimmunol. 246, 100-107.   DOI
45 Makide, K., Uwamizu, A., Shinjo, Y., Ishiguro, J., Okutani, M., Inoue, A. and Aoki, J. (2014) Novel lysophosphoplipid receptors: their structure and function. J. Lipid Res. 55, 1986-1995.   DOI
46 Marsolais, D., Yagi, S., Kago, T., Leaf, N. and Rosen, H. (2011) Modulation of chemokines and allergic airway inflammation by selective local sphingosine-1-phosphate receptor 1 agonism in lungs. Mol. Pharmacol. 79, 61-68.   DOI
47 Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., Allende, M. L., Proia, R. L. and Cyster, J. G. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355-360.   DOI
48 Kim, G. S., Yang, L., Zhang, G., Zhao, H., Selim, M., McCullough, L. D., Kluk, M. J. and Sanchez, T. (2015) Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat. Commun. 6, 7893.   DOI
49 Oskeritzian, C. A., Price, M. M., Hait, N. C., Kapitonov, D., Falanga, Y. T., Morales, J. K., Ryan, J. J., Milstien, S. and Spiegel, S. (2010) Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema. J. Exp. Med. 207, 465-474.   DOI
50 Overington, J. P., Al-Lazikani, B. and Hopkins, A. L. (2006) How many drug targets are there? Nat. Rev. Drug Discov. 5, 993-996.   DOI
51 Kim, H. J., Jung, C. G., Dukala, D., Bae, H., Kakazu, R., Wollmann, R. and Soliven, B. (2009) Fingolimod and related compounds in a spontaneous autoimmune polyneuropathy. J. Neuroimmunol. 214, 93-100.   DOI
52 Kitada, Y., Kajita, K., Taguchi, K., Mori, I., Yamauchi, M., Ikeda, T., Kawashima, M., Asano, M., Kajita, T., Ishizuka, T., Banno, Y., Kojima, I., Chun, J., Kamata, S., Ishii, I. and Morita, H. (2016) Blockade of sphingosine 1-phosphate receptor 2 signaling attenuates high-fat diet-induced adipocyte hypertrophy and systemic glucose intolerance in mice. Endocrinology 157, 1839-1851.   DOI
53 Nishi, T., Miyazaki, S., Takemoto, T., Suzuki, K., Iio, Y., Nakajima, K., Ohnuki, T., Kawase, Y., Nara, F., Inaba, S., Izumi, T., Yuita, H., Oshima, K., Doi, H., Inoue, R., Tomisato, W., Kagari, T. and Shimozato, T. (2011) Discovery of CS-0777: a potent, selective, and orally active $S1P_1$ agonist. ACS Med. Chem. Lett. 2, 368-372.   DOI
54 Moberly, J. B., Rohatagi, S., Zahir, H., Hsu, C., Noveck, R. J. and Truitt, K. E. (2012b) Pharmacological modulation of peripheral T and B lymphocytes by a selective sphingosine 1-phosphate receptor-1 modulator. J. Clin. Pharmacol. 52, 996-1006.   DOI
55 Moolenaar, W. H. and Hla, T. (2012) SnapShot: Bioactive lysophospholipids. Cell 148, 378-378.e2.   DOI
56 Mutoh, T., Rivera, R. and Chun, J. (2012) Insights into the pharmacological relevance of lysophospholipid receptors. Br. J. Pharmacol. 165, 829-844.   DOI
57 Lee, J. F., Gordon, S., Estrada, R., Wang, L., Siow, D. L., Wattenberg, B. W., Lominadze, D. and Lee, M. J. (2009) Balance of $S1P_1$ and $S1P_2$ signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature. Am. J. Physiol. Heart Circ. Physiol. 296, H33-H42.   DOI
58 Hashimoto, M., Wang, X., Mao, L., Kobayashi, T., Kawasaki, S., Mori, N., Toews, M. L., Kim, H. J., Cerutis, D. R., Liu, X. and Rennard, S. I. (2008) Sphingosine 1-phosphate potentiates human lung fibroblast chemotaxis through the $S1P_2$ receptor. Am. J. Respir. Cell Mol. Biol. 39, 356-363.   DOI
59 Kolahdooz, Z., Nasoohi, S., Asle-Rousta, M., Ahmadiani, A. and Dargahi, L. (2015) Sphingosin-1-phosphate receptor 1: a potential target to inhibit neuroinflammation and restore the sphingosin-1-phosphate metabolism. Can. J. Neurol. Sci. 42, 195-202.   DOI
60 Komiya, T., Sato, K., Shioya, H., Inagaki, Y., Hagiya, H., Kozaki, R., Imai, M., Takada, Y., Maeda, T., Kurata, H., Kurono, M., Suzuki, R., Otsuki, K., Habashita, H. and Nakade, S. (2013) Efficacy and immunomodulatory actions of ONO-4641, a novel selective agonist for sphingosine 1-phosphate receptors 1 and 5, in preclinical models of multiple sclerosis. Clin. Exp. Immunol. 171, 54-62.   DOI
61 Howard, A. D., McAllister, G., Feighner, S. D., Liu, Q., Nargund, R. P., Van der Ploeg, L. H. and Patchett, A. A. (2001) Orphan G-proteincoupled receptors and natural ligand discovery. Trends Pharmacol. Sci. 22, 132-140.
62 Bolli, M. H., Abele, S., Binkert, C., Bravo, R., Buchmann, S., Bur, D., Gatfield, J., Hess, P., Kohl, C., Mangold, C., Mathys, B., Menyhart, K., Muller, C., Nayler, O., Scherz, M., Schmidt, G., Sippel, V., Steiner, B., Strasser, D., Treiber, A. and Weller, T. (2010) 2-iminothiazolidin-4-one derivatives as potent, orally active $S1P_1$ receptor agonists. J. Med. Chem. 53, 4198-4211.   DOI
63 Brinkmann, V., Cyster, J. G. and Hla, T. (2004) FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am. J. Transplant. 4, 1019-1025.   DOI
64 Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., Bruns, C., Prieschl, E., Baumruker, T., Hiestand, P., Foster, C. A., Zollinger, M. and Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., Bruns, C., Prieschl, E., Baumruker, T., Hiestand, P., Foster, C. A., Zollinger, M. and Lynch, K. R. (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 277, 21453-21457.   DOI
65 Hofmann, U., Burkard, N., Vogt, C., Thoma, A., Frantz, S., Ertl, G., Ritter, O. and Bonz, A. (2009) Protective effects of sphingosine-1-phosphate receptor agonist treatment after myocardial ischaemia-reperfusion. Cardiovasc. Res. 83, 285-293.   DOI
66 Hou, J., Chen, Q., Zhang, K., Cheng, B., Xie, G., Wu, X., Luo, C., Chen, L., Liu, H., Zhao, B., Dai, K. and Fang, X. (2015) Sphingosine 1-phosphate receptor 2 signaling suppresses macrophage phagocytosis and impairs host defense against sepsis. Anesthesiology 123, 409-422.   DOI
67 Hughes, J. E., Srinivasan, S., Lynch, K. R., Proia, R. L., Ferdek, P. and Hedrick, C. C. (2008) Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ. Res. 102, 950-958.   DOI
68 Huu, D. L., Matsushita, T., Jin, G., Hamaguchi, Y., Hasegawa, M., Takehara, K. and Fujimoto, M. (2013) FTY720 ameliorates murine sclerodermatous chronic graft-versus-host disease by promoting expansion of splenic regulatory cells and inhibiting immune cell infiltration into skin. Arthritis Rheum. 65, 1624-1635.   DOI
69 Huwiler, A. and Pfeilschifter, J. (2008) New players on the center stage: sphingosine 1-phosphate and its receptors as drug targets. Biochem. Pharmacol. 75, 1893-1900.   DOI
70 Im, D. S. (2002) Orphan G protein-coupled receptors and beyond. Jpn. J. Pharmacol. 90, 101-106.   DOI
71 Wang, M., Lu, L., Liu, Y., Gu, G. and Tao, R. (2014) FTY720 attenuates hypoxia-reoxygenation-induced apoptosis in cardiomyocytes. Exp. Mol. Pathol. 97, 218-224.   DOI
72 Bunemann, M., Brandts, B., zu Heringdorf, D. M., van Koppen, C. J., Jakobs, K. H. and Pott, L. (1995) Activation of muscarinic $K^+$ current in guinea-pig atrial myocytes by sphingosine-1-phosphate. J. Physiol. 489, 701-707.   DOI
73 Calabresi, P. A., Radue, E. W., Goodin, D., Jeffery, D., Rammohan, K. W., Reder, A. T., Vollmer, T., Agius, M. A., Kappos, L., Stites, T., Li, B., Cappiello, L., von Rosenstiel, P. and Lublin, F. D. (2014) Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 545-556.   DOI
74 Camm, J., Hla, T., Bakshi, R. and Brinkmann, V. (2014) Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am. Heart J. 168, 632-644.   DOI
75 Wei, S. H., Rosen, H., Matheu, M. P., Sanna, M. G., Wang, S. K., Jo, E., Wong, C. H., Parker, I. and Cahalan, M. D. (2005) Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat. Immunol. 6, 1228-1235.   DOI
76 Whetzel, A. M., Bolick, D. T., Srinivasan, S., Macdonald, T. L., Morris, M. A., Ley, K. and Hedrick, C. C. (2006) Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the $S1P_1$ receptor. Circ. Res. 99, 731-739.   DOI
77 Xie, J. H., Nomura, N., Koprak, S. L., Quackenbush, E. J., Forrest, M. J. and Rosen, H. (2003) Sphingosine-1-phosphate receptor agonism impairs the efficiency of the local immune response by altering trafficking of naive and antigen-activated $CD4^+$ T cells. J. Immunol. 170, 3662-3670.   DOI
78 Eltzschig, H. K. and Collard, C. D. (2004) Vascular ischaemia and reperfusion injury. Br. Med. Bull. 70, 71-86.   DOI
79 D'Ambrosio, D., Freedman, M. S. and Prinz, J. (2016) Ponesimod, a selective $S1P_1$ receptor modulator: a potential treatment for multiple sclerosis and other immune-mediated diseases. Ther. Adv. Chronic Dis. 7, 18-33.   DOI
80 Davenport, A. P., Alexander, S. P., Sharman, J. L., Pawson, A. J., Benson, H. E., Monaghan, A. E., Liew, W. C., Mpamhanga, C. P., Bonner, T. I., Neubig, R. R., Pin, J. P., Spedding, M. and Harmar, A. J. (2013) International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev. 65, 967-986.   DOI
81 Forrest, M., Sun, S. Y., Hajdu, R., Bergstrom, J., Card, D., Doherty, G., Hale, J., Keohane, C., Meyers, C., Milligan, J., Mills, S., Nomura, N., Rosen, H., Rosenbach, M., Shei, G. J., Singer, II, Tian, M., West, S., White, V., Xie, J., Proia, R. L. and Mandala, S. (2004) Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J. Pharmacol. Exp. Ther. 309, 758-768.   DOI
82 Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272.   DOI
83 Fryer, R. M., Muthukumarana, A., Harrison, P. C., Nodop Mazurek, S., Chen, R. R., Harrington, K. E., Dinallo, R. M., Horan, J. C., Patnaude, L., Modis, L. K. and Reinhart, G. A. (2012) The clinicallytested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia ($S1P_1$) and hypertension ($S1P_3$) in rat. PLoS ONE 7, e52985.   DOI
84 Shimizu, H., Takahashi, M., Kaneko, T., Murakami, T., Hakamata, Y., Kudou, S., Kishi, T., Fukuchi, K., Iwanami, S., Kuriyama, K., Yasue, T., Enosawa, S., Matsumoto, K., Takeyoshi, I., Morishita, Y. and Kobayashi, E. (2005) KRP-203, a novel synthetic immunosuppressant, prolongs graft survival and attenuates chronic rejection in rat skin and heart allografts. Circulation 111, 222-229.   DOI
85 Xu, J., Gray, F., Henderson, A., Hicks, K., Yang, J., Thompson, P. and Oliver, J. (2014) Safety, pharmacokinetics, pharmacodynamics, and bioavailability of GSK2018682, a sphingosine-1-phosphate receptor modulator, in healthy volunteers. Clin. Pharmacol. Drug Dev. 3, 170-178.   DOI
86 Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., Okazaki, H., Okajima, F. and Ohta, H. (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to $Ca^{2+}$ signaling pathway. Biochem. Biophys. Res. Commun. 268, 583-589.   DOI
87 Yokoo, E., Yatomi, Y., Takafuta, T., Osada, M., Okamoto, Y. and Ozaki, Y. (2004) Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via $S1P_2$: cross-talk between platelets and mast cells. J. Biochem. 135, 673-681.   DOI
88 Selmaj, K., Li, D. K., Hartung, H. P., Hemmer, B., Kappos, L., Freedman, M. S., Stuve, O., Rieckmann, P., Montalban, X., Ziemssen, T., Auberson, L. Z., Pohlmann, H., Mercier, F., Dahlke, F. and Wallstrom, E. (2013) Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 12, 756-767.   DOI
89 Shea, B. S., Brooks, S. F., Fontaine, B. A., Chun, J., Luster, A. D. and Tager, A. M. (2010) Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am. J. Respir. Cell Mol. Biol. 43, 662-673.   DOI
90 Skoura, A., Michaud, J., Im, D. S., Thangada, S., Xiong, Y., Smith, J. D. and Hla, T. (2011) Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 81-85.   DOI
91 Song, J., Matsuda, C., Kai, Y., Nishida, T., Nakajima, K., Mizushima, T., Kinoshita, M., Yasue, T., Sawa, Y. and Ito, T. (2008) A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice. J. Pharmacol. Exp. Ther. 324, 276-283.
92 Stone, M. L., Sharma, A. K., Zhao, Y., Charles, E. J., Huerter, M. E., Johnston, W. F., Kron, I. L., Lynch, K. R. and Laubach, V. E. (2015) Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L1245-L1252.   DOI
93 Proia, R. L. and Hla, T. (2015) Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J. Clin. Invest. 125, 1379-1387.   DOI
94 Pan, S., Mi, Y., Pally, C., Beerli, C., Chen, A., Guerini, D., Hinterding, K., Nuesslein-Hildesheim, B., Tuntland, T., Lefebvre, S., Liu, Y., Gao, W., Chu, A., Brinkmann, V., Bruns, C., Streiff, M., Cannet, C., Cooke, N. and Gray, N. (2006) A monoselective sphingosine-1-phosphate receptor-1 agonist prevents allograft rejection in a stringent rat heart transplantation model. Chem. Biol. 13, 1227-1234.   DOI
95 Noda, H., Takeuchi, H., Mizuno, T. and Suzumura, A. (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J. Neuroimmunol. 256, 13-18.   DOI
96 Park, S. W., Kim, M., Chen, S. W., Brown, K. M., D'Agati, V. D. and Lee, H. T. (2010) Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through $S1P_1$ receptor activation. Lab. Invest. 90, 1209-1224.   DOI
97 Paugh, S. W., Payne, S. G., Barbour, S. E., Milstien, S. and Spiegel, S. (2003) The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett. 554, 189-193.   DOI
98 Piali, L., Froidevaux, S., Hess, P., Nayler, O., Bolli, M. H., Schlosser, E., Kohl, C., Steiner, B. and Clozel, M. (2011) The selective sphingosine 1-phosphate receptor 1 agonist ponesimod protects against lymphocyte-mediated tissue inflammation. J. Pharmacol. Exp. Ther. 337, 547-556.   DOI
99 Poti, F., Costa, S., Bergonzini, V., Galletti, M., Pignatti, E., Weber, C., Simoni, M. and Nofer, J. R. (2012) Effect of sphingosine 1-phosphate (S1P) receptor agonists FTY720 and CYM5442 on atherosclerosis development in LDL receptor deficient (LDL-$R^{-/-}$) mice. Vascul. Pharmacol. 57, 56-64.   DOI
100 Poti, F., Gualtieri, F., Sacchi, S., Weissen-Plenz, G., Varga, G., Brodde, M., Weber, C., Simoni, M. and Nofer, J. R. (2013) KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-$R^{-/-}$ mice. Arterioscler. Thromb. Vasc. Biol. 33, 1505-1512.   DOI
101 Ohno, T., Hasegawa, C., Nakade, S., Kitagawa, J., Honda, N. and Ogawa, M. (2010) The prediction of human response to ONO-4641, a sphingosine 1-phosphate receptor modulator, from preclinical data based on pharmacokinetic-pharmacodynamic modeling. Biopharm. Drug Dispos. 31, 396-406.   DOI
102 Nofer, J. R., Bot, M., Brodde, M., Taylor, P. J., Salm, P., Brinkmann, V., van Berkel, T., Assmann, G. and Biessen, E. A. (2007) FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115, 501-508.   DOI
103 O'Sullivan, C., Schubart, A., Mir, A. K. and Dev, K. K. (2016) The dual $S1PR_1$/$S1PR_5$ drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J. Neuroinflammation 13, 31.   DOI
104 Ogawa, R., Takahashi, M., Hirose, S., Morimoto, H., Ise, H., Murakami, T., Yasue, T., Kuriyama, K., Hongo, M., Kobayashi, E. and Ikeda, U. (2007) A novel sphingosine-1-phosphate receptor agonist KRP-203 attenuates rat autoimmune myocarditis. Biochem. Biophys. Res. Commun. 361, 621-628.   DOI
105 Okajima, F., Tomura, H., Sho, K., Kimura, T., Sato, K., Im, D. S., Akbar, M. and Kondo, Y. (1997) Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-$Ca^{2+}$ system in FRTL-5 thyroid cells: possible involvement of guanosine triphosphate-binding proteins in the lipid signaling. Endocrinology 138, 220-229.   DOI
106 Okamoto, H., Takuwa, N., Yatomi, Y., Gonda, K., Shigematsu, H. and Takuwa, Y. (1999) EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. Biochem. Biophys. Res. Commun. 260, 203-208.   DOI
107 Lien, Y. H., Yong, K. C., Cho, C., Igarashi, S. and Lai, L. W. (2006) $S1P_1$-selective agonist, SEW2871, ameliorates ischemic acute renal failure. Kidney Int. 69, 1601-1608.   DOI
108 Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S. and Hla, T. (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552-1555.   DOI
109 Li, C., Zheng, S., You, H., Liu, X., Lin, M., Yang, L. and Li, L. (2011) Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J. Hepatol. 54, 1205-1213.   DOI
110 Li, Y. J., Chang, G. Q., Liu, Y., Gong, Y., Yang, C., Wood, K., Shi, F. D., Fu, Y. and Yan, Y. (2015) Fingolimod alters inflammatory mediators and vascular permeability in intracerebral hemorrhage. Neurosci. Bull. 31, 755-762.   DOI
111 Liu, X., Yue, S., Li, C., Yang, L., You, H. and Li, L. (2011) Essential roles of sphingosine 1-phosphate receptor types 1 and 3 in human hepatic stellate cells motility and activation. J. Cell. Physiol. 226, 2370-2377.   DOI
112 Lublin, F., Miller, D. H., Freedman, M. S., Cree, B. A., Wolinsky, J. S., Weiner, H., Lubetzki, C., Hartung, H. P., Montalban, X., Uitdehaag, B. M., Merschhemke, M., Li, B., Putzki, N., Liu, F. C., Haring, D. A. and Kappos, L. (2016) Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 387, 1075-1084.   DOI
113 Im, D. S. (2010) Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol. Sin. 31, 1213-1222.   DOI
114 Im, D. S. (2003) Linking Chinese medicine and G-protein-coupled receptors. Trends Pharmacol. Sci. 24, 2-4.   DOI
115 Im, D. S. (2004) Discovery of new G protein-coupled receptors for lipid mediators. J. Lipid. Res. 45, 410-418.   DOI
116 Im, D. S. (2009) New intercellular lipid mediators and their GPCRs: an update. Prostaglandins Other Lipid Medat. 89, 53-56.   DOI
117 Im, D. S. (2013) Intercellular lipid mediators and GPCR drug discovery. Biomol. Ther. (Seoul) 21, 411-422.   DOI
118 Im, D. S., Fujioka, T., Katada, T., Kondo, Y., Ui, M. and Okajima, F. (1997) Characterization of sphingosine 1-phosphate-induced actions and its signaling pathways in rat hepatocytes. Am. J. Physiol. 272, G1091-G1099.
119 Japtok, L., Schmitz, E. I., Fayyaz, S., Kramer, S., Hsu, L. J. and Kleuser, B. (2015) Sphingosine 1-phosphate counteracts insulin signaling in pancreatic ${\beta}$-cells via the sphingosine 1-phosphate receptor subtype 2. FASEB J. 29, 3357-3369.   DOI
120 Jackson, S. J., Giovannoni, G. and Baker, D. (2011) Fingolimod modulates microglial activation to augment markers of remyelination. J. Neuroinflammation 8, 76.   DOI
121 Kaneko, T., Murakami, T., Kawana, H., Takahashi, M., Yasue, T. and Kobayashi, E. (2006) Sphingosine-1-phosphate receptor agonists suppress concanavalin A-induced hepatic injury in mice. Biochem. Biophys. Res. Commun. 345, 85-92.   DOI
122 Kappos, L., Li, D. K., Stuve, O., Hartung, H. P., Freedman, M. S., Hemmer, B., Rieckmann, P., Montalban, X., Ziemssen, T., Hunter, B., Arnould, S., Wallstrom, E. and Selmaj, K. (2016) Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 73, 1089-1098.   DOI
123 Kappos, L., Radue, E. W., O'Connor, P., Polman, C., Hohlfeld, R., Calabresi, P., Selmaj, K., Agoropoulou, C., Leyk, M., Zhang-Auberson, L., Burtin, P. and Group, F. S. (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387-401.   DOI
124 Im, D. S., Heise, C. E., Ancellin, N., O'Dowd, B. F., Shei, G. J., Heavens, R. P., Rigby, M. R., Hla, T., Mandala, S., McAllister, G., George, S. R. and Lynch, K. R. (2000) Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J. Biol. Chem. 275, 14281-14286.   DOI
125 Lukas, S., Patnaude, L., Haxhinasto, S., Slavin, A., Hill-Drzewi, M., Horan, J. and Modis, L. K. (2014) No differences observed among multiple clinical $S1P_1$ receptor agonists (functional antagonists) in $S1P_1$ receptor down-regulation and degradation. J. Biomol. Screen. 19, 407-416.   DOI
126 Lynch, K. R. and Im, D. S. (1999) Life on the edg. Trends Pharmacol. Sci. 20, 473-475.   DOI
127 Chiba, K. (2005) FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol. Ther. 108, 308-319.   DOI
128 Fu, Y., Hao, J., Zhang, N., Ren, L., Sun, N., Li, Y. J., Yan, Y., Huang, D., Yu, C. and Shi, F. D. (2014) Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 71, 1092-1101.   DOI
129 Fujishiro, J., Kudou, S., Iwai, S., Takahashi, M., Hakamata, Y., Kinoshita, M., Iwanami, S., Izawa, S., Yasue, T., Hashizume, K., Murakami, T. and Kobayashi, E. (2006) Use of sphingosine-1-phosphate 1 receptor agonist, KRP-203, in combination with a subtherapeutic dose of cyclosporine A for rat renal transplantation. Transplantation 82, 804-812.
130 Gardell, S. E., Dubin, A. E. and Chun, J. (2006) Emerging medicinal roles for lysophospholipid signaling. Trends Mol. Med. 12, 65-75.   DOI
131 Imasawa, T., Koike, K., Ishii, I., Chun, J. and Yatomi, Y. (2010) Blockade of sphingosine 1-phosphate receptor 2 signaling attenuates streptozotocin-induced apoptosis of pancreatic b-cells. Biochem. Biophys. Res. Commun. 392, 207-211.   DOI
132 Ito, S., Iwaki, S., Koike, K., Yuda, Y., Nagasaki, A., Ohkawa, R., Yatomi, Y., Furumoto, T., Tsutsui, H., Sobel, B. E. and Fujii, S. (2013) Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. Coron. Artery Dis. 24, 642-650.