Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0118

Role of Sphingolipids and Metabolizing Enzymes in Hematological Malignancies  

Kitatani, Kazuyuki (Tohoku Medical Megabank Organization, Tohoku University)
Taniguchi, Makoto (Medical Research Institute, Kanazawa Medical University)
Okazaki, Toshiro (Medical Research Institute, Kanazawa Medical University)
Abstract
Sphingolipids such as ceramide, sphingosine-1-phosphate and sphingomyelin have been emerging as bioactive lipids since ceramide was reported to play a role in human leukemia HL-60 cell differentiation and death. Recently, it is well-known that ceramide acts as an inducer of cell death, that sphingomyelin works as a regulator for microdomain function of the cell membrane, and that sphingosine-1-phosphate plays a role in cell survival/proliferation. The lipids are metabolized by the specific enzymes, and each metabolite could be again returned to the original form by the reverse action of the different enzyme or after a long journey of many metabolizing/synthesizing pathways. In addition, the metabolites may serve as reciprocal biomodulators like the rheostat between ceramide and sphingosine-1-phosphate. Therefore, the change of lipid amount in the cells, the subcellular localization and the downstream signal in a specific subcellular organelle should be clarified to understand the pathobiological significance of sphingolipids when extracellular stimulation induces a diverse of cell functions such as cell death, proliferation and migration. In this review, we focus on how sphingolipids and their metabolizing enzymes cooperatively exert their function in proliferation, migration, autophagy and death of hematopoetic cells, and discuss the way developing a novel therapeutic device through the regulation of sphingolipids for effectively inhibiting cell proliferation and inducing cell death in hematological malignancies such as leukemia, malignant lymphoma and multiple myeloma.
Keywords
ceramide; leukemia; lymphoma; sphingolipid; sphingomyelin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adada, M., Canals, D., Hannun, Y.A., and Obeid, L.M. (2014). Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim. Biophys. Acta 1841, 727-737.   DOI
2 Airola, M.V., and Hannun, Y.A. (2013). Sphingolipid metabolism and neutral sphingomyelinases. Handb. Exp. Pharmacol. 2013, 57-76.
3 Allan, D. (2000). Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis. Biochem. J. 345 Pt 3, 603-610.   DOI
4 Casson, L., Howell, L., Mathews, L.A., Ferrer, M., Southall, N., Guha, R., Keller, J.M., Thomas, C., Siskind, L.J., and Beverly, L.J. (2013). Inhibition of ceramide metabolism sensitizes human leukemia cells to inhibition of BCL2-like proteins. PLoS One 8, e54525.   DOI   ScienceOn
5 Cattoretti, G., Mandelbaum, J., Lee, N., Chaves, A.H., Mahler, A.M., Chadburn, A., Dalla-Favera, R., Pasqualucci, L., and MacLennan, A.J. (2009). Targeted disruption of the S1P2 sphingosine 1- phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res. 69, 8686-8692.   DOI   ScienceOn
6 Chapman, J.V., Gouaze-Andersson, V., Messner, M.C., Flowers, M., Karimi, R., Kester, M., Barth, B.M., Liu, X., Liu, Y.Y., Giuliano, A.E., et al. (2010). Metabolism of short-chain ceramide by human cancer cells--implications for therapeutic approaches. Biochem. Pharmacol. 80, 308-315.   DOI   ScienceOn
7 Chen, L., Luo, L.F., Lu, J., Li, L., Liu, Y.F., Wang, J., Liu, H., Song, H., Jiang, H., Chen, S.J., et al. (2014). FTY720 induces apoptosis of M2 subtype acute myeloid leukemia cells by targeting sphingolipid metabolism and increasing endogenous ceramide levels. PLoS One 9, e103033.   DOI
8 Clarke, C.J., Snook, C.F., Tani, M., Matmati, N., Marchesini, N., and Hannun, Y.A. (2006). The extended family of neutral sphingomyelinases. Biochemistry 45, 11247-11256.   DOI   ScienceOn
9 Dbaibo, G.S., Kfoury, Y., Darwiche, N., Panjarian, S., Kozhaya, L., Nasr, R., Abdallah, M., Hermine, O., El-Sabban, M., de The, H., et al. (2007). Arsenic trioxide induces accumulation of cytotoxic levels of ceramide in acute promyelocytic leukemia and adult Tcell leukemia/lymphoma cells through de novo ceramide synthesis and inhibition of glucosylceramide synthase activity. Haematologica 92, 753-762.   DOI
10 Huang, W.C., Tsai, C.C., Chen, C.L., Chen, T.Y., Chen, Y.P., Lin, Y.S., Lu, P.J., Lin, C.M., Wang, S.H., Tsao, C.W., et al. (2011). Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J. 25, 3661-3673.   DOI   ScienceOn
11 Huitema, K., van den Dikkenberg, J., Brouwers, J.F., and Holthuis, J.C. (2004). Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33-44.   DOI   ScienceOn
12 Hwang, Y.H., Tani, M., Nakagawa, T., Okino, N., and Ito, M. (2005). Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochem. Biophys. Res. Commun. 331, 37-42.   DOI   ScienceOn
13 Ichikawa, S., and Hirabayashi, Y. (1998). Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 8, 198-202.   DOI   ScienceOn
14 Ishibashi, Y., Kohyama-Koganeya, A., and Hirabayashi, Y. (2013). New insights on glucosylated lipids: metabolism and functions. Biochim. Biophys. Acta 1831, 1475-1485.   DOI   ScienceOn
15 Ito, M., Okino, N., and Tani, M. (2014). New insight into the structure, reaction mechanism, and biological functions of neutral ceramidase. Biochim. Biophys. Acta 1841, 682-691.   DOI   ScienceOn
16 Itoh, M., Kitano, T., Watanabe, M., Kondo, T., Yabu, T., Taguchi, Y., Iwai, K., Tashima, M., Uchiyama, T., and Okazaki, T. (2003). Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin. Cancer Res. 9, 415-423.
17 Park, J.W., Park, W.J., and Futerman, A.H. (2014). Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671-681.   DOI   ScienceOn
18 Obeid, L.M., Linardic, C.M., Karolak, L.A., and Hannun, Y.A. (1993). Programmed cell death induced by ceramide. Science 259, 1769-1771.   DOI
19 Okazaki, T., Bell, R.M., and Hannun, Y.A. (1989). Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J. Biol. Chem. 264, 19076-19080.
20 Park, J.H., and Schuchman, E.H. (2006). Acid ceramidase and human disease. Biochim. Biophys. Acta 1758, 2133-2138.   DOI   ScienceOn
21 Paugh, S.W., Paugh, B.S., Rahmani, M., Kapitonov, D., Almenara, J.A., Kordula, T., Milstien, S., Adams, J.K., Zipkin, R.E., Grant, S., et al. (2008). A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112, 1382-1391.   DOI   ScienceOn
22 Pavlova, E.V., Wang, S.Z., Archer, J., Dekker, N., Aerts, J.M., Karlsson, S., and Cox, T.M. (2013). B cell lymphoma and myeloma in murine Gaucher's disease. J. Pathol. 231, 88-97.   DOI   ScienceOn
23 Pippa, R., Dominguez, A., Christensen, D.J., Moreno-Miralles, I., Blanco-Prieto, M.J., Vitek, M.P., and Odero, M.D. (2014). Effect of FTY720 on the SET-PP2A complex in acute myeloid leukemia; SET binding drugs have antagonistic activity. Leukemia 28, 1915-1918.   DOI   ScienceOn
24 Pitson, S.M. (2011). Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem. Sci. 36, 97-107.   DOI   ScienceOn
25 Pyne, N.J., and Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 10, 489-503.   DOI   ScienceOn
26 Yamaji, T., and Hanada, K. (2015). Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 16, 101-122.   DOI   ScienceOn
27 Watters, R.J., Fox, T.E., Tan, S.F., Shanmugavelandy, S., Choby, J.E., Broeg, K., Liao, J., Kester, M., Cabot, M.C., Loughran, T.P., et al. (2013). Targeting glucosylceramide synthase synergizes with C6-ceramide nanoliposomes to induce apoptosis in natural killer cell leukemia. Leuk. Lymphoma 54, 1288-1296.   DOI   ScienceOn
28 Wu, B.X., Rajagopalan, V., Roddy, P.L., Clarke, C.J., and Hannun, Y.A. (2010). Identification and characterization of murine mitochondria- associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5. J. Biol. Chem. 285, 17993-18002.   DOI   ScienceOn
29 Yamaji, T., and Hanada, K. (2014). Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs. PLoS One 9, e88124.   DOI
30 Yamaoka, S., Miyaji, M., Kitano, T., Umehara, H., and Okazaki, T. (2004). Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase- defective lymphoid cells. J. Biol. Chem. 279, 18688-18693.   DOI   ScienceOn
31 Yildiz, Y., Matern, H., Thompson, B., Allegood, J.C., Warren, R.L., Ramirez, D.M., Hammer, R.E., Hamra, F.K., Matern, S., and Russell, D.W. (2006). Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J. Clin. Invest. 116, 2985-2994.   DOI   ScienceOn
32 Yun, S.H., Park, E.S., Shin, S.W., Na, Y.W., Han, J.Y., Jeong, J.S., Shastina, V.V., Stonik, V.A., Park, J.I., and Kwak, J.Y. (2012). Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin. Cancer Res. 18, 5934-5948.   DOI   ScienceOn
33 Baek, M.Y., Yoo, H.S., Nakaya, K., Moon, D.C., and Lee, Y.M. (2001). Sphingolipid metabolic changes during chiral C2-ceramides induced apoptosis in human leukemia cells. Arch. Pharm. Res. 24, 144-149.   DOI   ScienceOn
34 Apraiz, A., Idkowiak-Baldys, J., Nieto-Rementeria, N., Boyano, M.D., Hannun, Y.A., and Asumendi, A. (2012). Dihydroceramide accumulation and reactive oxygen species are distinct and nonessential events in 4-HPR-mediated leukemia cell death. Biochem. Cell Biol. 90, 209-223.   DOI   ScienceOn
35 Asano, S., Kitatani, K., Taniguchi, M., Hashimoto, M., Zama, K., Mitsutake, S., Igarashi, Y., Takeya, H., Kigawa, J., Hayashi, A., et al. (2012). Regulation of cell migration by sphingomyelin synthases: sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol. Cell. Biol. 32, 3242-3252.   DOI
36 Ayto, R., and Hughes, D.A. (2013). Gaucher disease and myeloma. Crit. Rev. Oncog. 18, 247-268.   DOI
37 Baran, Y., Salas, A., Senkal, C.E., Gunduz, U., Bielawski, J., Obeid, L.M., and Ogretmen, B. (2007). Alterations of ceramide/ sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J. Biol. Chem. 282, 10922-10934.   DOI   ScienceOn
38 Baran, Y., Bielawski, J., Gunduz, U., and Ogretmen, B. (2011). Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res. Clin. Oncol. 137, 1535-1544.   DOI
39 Bezombes, C., Grazide, S., Garret, C., Fabre, C., Quillet-Mary, A., Muller, S., Jaffrezou, J.P., and Laurent, G. (2004). Rituximab antiproliferative effect in B-lymphoma cells is associated with acid- sphingomyelinase activation in raft microdomains. Blood 104, 1166-1173.   DOI   ScienceOn
40 Degagne, E., and Saba, J.D. (2014). S1pping fire: Sphingosine-1- phosphate signaling as an emerging target in inflammatory bowel disease and colitis-associated cancer. Clin. Exp. Gastroenterol. 7, 205-214.   DOI   ScienceOn
41 Ding, T., Kabir, I., Li, Y., Lou, C., Yazdanyar, A., Xu, J., Dong, J., Zhou, H., Park, T., Boutjdir, M., et al. (2015). All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity. J. Lipid Res. 56, 537-545.   DOI   ScienceOn
42 Dinur, T., Osiecki, K.M., Legler, G., Gatt, S., Desnick, R.J., and Grabowski, G.A. (1986). Human acid beta-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site. Proc. Natl. Acad. Sci. USA 83, 1660-1664.   DOI   ScienceOn
43 Duan, R.D. (2006). Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim. Biophys. Acta 1761, 281-291.   DOI   ScienceOn
44 El Bawab, S., Roddy, P., Qian, T., Bielawska, A., Lemasters, J.J., and Hannun, Y.A. (2000). Molecular cloning and characterization of a human mitochondrial ceramidase. J. Biol. Chem. 275, 21508-21513.   DOI   ScienceOn
45 Evangelisti, C., Evangelisti, C., Teti, G., Chiarini, F., Falconi, M., Melchionda, F., Pession, A., Bertaina, A., Locatelli, F., McCubrey, J.A., et al. (2014). Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget 5, 7886-7901.   DOI
46 Futerman, A.H., and Hannun, Y.A. (2004). The complex life of simple sphingolipids. EMBO Rep. 5, 777-782.   DOI   ScienceOn
47 Futerman, A.H., and Riezman, H. (2005). The ins and outs of sphingolipid synthesis. Trends Cell Biol. 15, 312-318.   DOI   ScienceOn
48 Kitatani, K., Idkowiak-Baldys, J., and Hannun, Y.A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal. 20, 1010-1018.   DOI   ScienceOn
49 Jenkins, R.W., Canals, D., and Hannun, Y.A. (2009). Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell. Signal. 21, 836-846.   DOI   ScienceOn
50 Kartal, M., Saydam, G., Sahin, F., and Baran, Y. (2011). Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr. Cancer 63, 637-644.   DOI   ScienceOn
51 Kiyota, M., Kuroda, J., Yamamoto-Sugitani, M., Shimura, Y., Nakayama, R., Nagoshi, H., Mizutani, S., Chinen, Y., Sasaki, N., Sakamoto, N., et al. (2013). FTY720 induces apoptosis of chronic myelogenous leukemia cells via dual activation of BIM and BID and overcomes various types of resistance to tyrosine kinase inhibitors. Apoptosis 18, 1437-1446.   DOI   ScienceOn
52 Kluk, M.J., Ryan, K.P., Wang, B., Zhang, G., Rodig, S.J., and Sanchez, T. (2013). Sphingosine-1-phosphate receptor 1 in classical Hodgkin lymphoma: assessment of expression and role in cell migration. Lab. Invest. 93, 462-471.   DOI   ScienceOn
53 Koch, J., Gartner, S., Li, C.M., Quintern, L.E., Bernardo, K., Levran, O., Schnabel, D., Desnick, R.J., Schuchman, E.H., and Sandhoff, K. (1996). Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification Of the first molecular lesion causing Farber disease. J. Biol. Chem. 271, 33110-33115.   DOI   ScienceOn
54 Krut, O., Wiegmann, K., Kashkar, H., Yazdanpanah, B., and Kronke, M. (2006). Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J. Biol. Chem. 281, 13784-13793.   DOI   ScienceOn
55 Ryland, L.K., Doshi, U.A., Shanmugavelandy, S.S., Fox, T.E., Aliaga, C., Broeg, K., Baab, K.T., Young, M., Khan, O., Haakenson, J.K., et al. (2013). C6-ceramide nanoliposomes target the Warburg effect in chronic lymphocytic leukemia. PLoS One 8, e84648.   DOI   ScienceOn
56 Pyne, S., Lee, S.C., Long, J., and Pyne, N.J. (2009). Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell. Signal. 21, 14-21.   DOI   ScienceOn
57 Qi, X., and Mochly-Rosen, D. (2008). The PKCdelta -Abl complex communicates ER stress to the mitochondria - an essential step in subsequent apoptosis. J. Cell Sci. 121, 804-813.   DOI   ScienceOn
58 Rodriguez-Cuenca, S., Barbarroja, N., and Vidal-Puig, A. (2015). Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim. Biophys. Acta 1851, 40-50.   DOI   ScienceOn
59 Saba, J.D., and de la Garza-Rodea, A.S. (2013). S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. Biochim Biophys Acta 1831, 167-175.   DOI   ScienceOn
60 Saddoughi, S.A., Garrett-Mayer, E., Chaudhary, U., O'Brien, P.E., Afrin, L.B., Day, T.A., Gillespie, M.B., Sharma, A.K., Wilhoit, C.S., Bostick, R., et al. (2011). Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C(1)(8)-ceramide as a novel biomarker for monitoring response. Clin. Cancer Res. 17, 6097-6105.   DOI
61 Saddoughi, S.A., and Ogretmen, B. (2013). Diverse functions of ceramide in cancer cell death and proliferation. Adv. Cancer Res. 117, 37-58.   DOI
62 Zembruski, N.C., Nguyen, C.D., Theile, D., Ali, R.M., Herzog, M., Hofhaus, G., Heintz, U., Burhenne, J., Haefeli, W.E., and Weiss, J. (2013). Liposomal sphingomyelin influences the cellular lipid profile of human lymphoblastic leukemia cells without effect on P-glycoprotein activity. Mol. Pharm. 10, 1020-1034.   DOI   ScienceOn
63 Zeidan, Y.H., Jenkins, R.W., and Hannun, Y.A. (2008). Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J. Cell Biol. 181, 335-350.   DOI   ScienceOn
64 Yun, S.H., Park, E.S., Shin, S.W., Na, Y.W., Han, J.Y., Jeong, J.S., Shastina, V.V., Stonik, V.A., Park, J.I., and Kwak, J.Y. (2012). Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin. Cancer Res. 18, 5934-5948.   DOI   ScienceOn
65 Zeidan, Y.H., Jenkins, R.W., and Hannun, Y.A. (2008). Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J. Cell Biol. 181, 335-350.   DOI   ScienceOn
66 Zhang, Y.Y., Xie, K.M., Yang, G.Q., Mu, H.J., Yin, Y., Zhang, B., and Xie, P. (2011). The effect of glucosylceramide synthase on P-glycoprotein function in K562/AO2 leukemia drug-resistance cell line. Int. J. Hematol. 93, 361-367.   DOI
67 Zhang, P., Chen, Y., Cheng, Y., Hertervig, E., Ohlsson, L., Nilsson, A., and Duan, R.D. (2014). Alkaline sphingomyelinase (NPP7) promotes cholesterol absorption by affecting sphingomyelin levels in the gut: A study with NPP7 knockout mice. Am. J. Physiol. Gastrointest Liver Physiol. 306, G903-908.   DOI   ScienceOn
68 Zumbansen, M., and Stoffel, W. (2002). Neutral sphingomyelinase 1 deficiency in the mouse causes no lipid storage disease. Mol. Cell Biol. 22, 3633-3638.   DOI
69 Bonhoure, E., Pchejetski, D., Aouali, N., Morjani, H., Levade, T., Kohama, T., and Cuvillier, O. (2006). Overcoming MDRassociated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20, 95-102.   DOI   ScienceOn
70 Bleicher, R.J., and Cabot, M.C. (2002). Glucosylceramide synthase and apoptosis. Biochim. Biophys. Acta 1585, 172-178.   DOI   ScienceOn
71 Boot, R.G., Verhoek, M., Donker-Koopman, W., Strijland, A., van Marle, J., Overkleeft, H.S., Wennekes, T., and Aerts, J.M. (2007). Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J. Biol. Chem. 282, 1305-1312.   DOI   ScienceOn
72 Borge, M., Remes Lenicov, F., Nannini, P.R., de los Rios Alicandu, M.M., Podaza, E., Ceballos, A., Fernandez Grecco, H., Cabrejo, M., Bezares, R.F., Morande, P.E., et al. (2014). The expression of sphingosine-1 phosphate receptor-1 in chronic lymphocytic leukemia cells is impaired by tumor microenvironmental signals and enhanced by piceatannol and R406. J. Immunol. 193, 3165-3174.   DOI   ScienceOn
73 Burns, T.A., Subathra, M., Signorelli, P., Choi, Y., Yang, X., Wang, Y., Villani, M., Bhalla, K., Zhou, D., and Luberto, C. (2013). Sphingomyelin synthase 1 activity is regulated by the BCR-ABL oncogene. J. Lipid Res. 54, 794-805.   DOI
74 Camgoz, A., Gencer, E.B., Ural, A.U., Avcu, F., and Baran, Y. (2011). Roles of ceramide synthase and ceramide clearence genes in nilotinib-induced cell death in chronic myeloid leukemia cells. Leuk. Lymphoma 52, 1574-1584.   DOI   ScienceOn
75 Carpinteiro, A., Dumitru, C., Schenck, M., and Gulbins, E. (2008). Ceramide-induced cell death in malignant cells. Cancer Lett. 264, 1-10.   DOI   ScienceOn
76 Grabowski, G.A. (1993). Gaucher disease. Enzymology, genetics, and treatment. Adv. Hum. Genet. 21, 377-441.
77 Ganapathy-Kanniappan, S., Kunjithapatham, R., and Geschwind, J.F. (2013). Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res. 33, 13-20.
78 Garcia-Bernal, D., Redondo-Munoz, J., Dios-Esponera, A., Chevre, R., Bailon, E., Garayoa, M., Arellano-Sanchez, N., Gutierrez, N.C., Hidalgo, A., Garcia-Pardo, A., et al. (2013). Sphingosine-1- phosphate activates chemokine-promoted myeloma cell adhesion and migration involving alpha4beta1 integrin function. J. Pathol. 229, 36-48.   DOI   ScienceOn
79 Gault, C.R., Obeid, L.M., and Hannun, Y.A. (2010). An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1-23.   DOI
80 Grassme, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., Weller, M., Kolesnick, R., and Gulbins, E. (2003). Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322-330.   DOI   ScienceOn
81 Gustafsson, K., Christensson, B., Sander, B., and Flygare, J. (2006). Cannabinoid receptor-mediated apoptosis induced by R(+)- methanandamide and Win55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol. Pharmacol. 70, 1612-1620.   DOI   ScienceOn
82 Gustafsson, K., Sander, B., Bielawski, J., Hannun, Y.A., and Flygare, J. (2009). Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism. Mol. Cancer Res. 7, 1086-1098.   DOI   ScienceOn
83 Liu, Y.Y., Han, T.Y., Giuliano, A.E., and Cabot, M.C. (1999). Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J. Biol. Chem. 274, 1140-1146.   DOI   ScienceOn
84 Lafont, E., Milhas, D., Carpentier, S., Garcia, V., Jin, Z.X., Umehara, H., Okazaki, T., Schulze-Osthoff, K., Levade, T., Benoist, H., et al. (2010). Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. Cell Death Differ. 17, 642-654.   DOI   ScienceOn
85 Li, Q.F., Wu, C.T., Guo, Q., Wang, H., and Wang, L.S. (2008). Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochem. Biophys. Res. Commun. 371, 159-162.   DOI   ScienceOn
86 Liao, A., Broeg, K., Fox, T., Tan, S.F., Watters, R., Shah, M.V., Zhang, L.Q., Li, Y., Ryland, L., Yang, J., et al. (2011). Therapeutic efficacy of FTY720 in a rat model of NK-cell leukemia. Blood 118, 2793-2800.   DOI   ScienceOn
87 Liu, Q., Zhao, X., Frissora, F., Ma, Y., Santhanam, R., Jarjoura, D., Lehman, A., Perrotti, D., Chen, C.S., Dalton, J.T., et al. (2008). FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 111, 275-284.   DOI   ScienceOn
88 Liu, X., Ryland, L., Yang, J., Liao, A., Aliaga, C., Watts, R., Tan, S.F., Kaiser, J., Shanmugavelandy, S.S., Rogers, A., et al. (2010). Targeting of survivin by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Blood 116, 4192-4201.   DOI   ScienceOn
89 Maceyka, M., and Spiegel, S. (2014). Sphingolipid metabolites in inflammatory disease. Nature 510, 58-67.   DOI   ScienceOn
90 Savic, R., He, X., Fiel, I., and Schuchman, E.H. (2013). Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer. PLoS One 8, e65620.   DOI
91 Savic, R., and Schuchman, E.H. (2013). Use of acid sphingomyelinase for cancer therapy. Adv. Cancer Res. 117, 91-115.   DOI   ScienceOn
92 Sawai, H., Domae, N., Nagan, N., and Hannun, Y.A. (1999). Function of the cloned putative neutral sphingomyelinase as lysoplatelet activating factor-phospholipase C. J. Biol. Chem. 274, 38131-38139.   DOI   ScienceOn
93 Schulze, H., and Sandhoff, K. (2011). Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol. 3.
94 Semac, I., Palomba, C., Kulangara, K., Klages, N., van Echten-Deckert, G., Borisch, B., and Hoessli, D.C. (2003). Anti-CD20 therapeutic antibody rituximab modifies the functional organization of rafts/microdomains of B lymphoma cells. Cancer Res. 63, 534-540.
95 Senchenkov, A., Litvak, D.A., and Cabot, M.C. (2001). Targeting ceramide metabolism--a strategy for overcoming drug resistance. J. Natl. Cancer Inst. 93, 347-357.   DOI   ScienceOn
96 Serra, M., and Saba, J.D. (2010). Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv. Enzyme Regul. 50, 349-362.   DOI   ScienceOn
97 Shakor, A.B., Taniguchi, M., Kitatani, K., Hashimoto, M., Asano, S., Hayashi, A., Nomura, K., Bielawski, J., Bielawska, A., Watanabe, K., et al. (2011). Sphingomyelin synthase 1-generated sphingomyelin plays an important role in transferrin trafficking and cell proliferation. J. Biol. Chem. 286, 36053-36062.   DOI   ScienceOn
98 Hanada, K., Hara, T., and Nishijima, M. (2000). Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J. Biol. Chem. 275, 8409-8415.   DOI   ScienceOn
99 Hammad, S.M., Pierce, J.S., Soodavar, F., Smith, K.J., Al Gadban, M.M., Rembiesa, B., Klein, R.L., Hannun, Y.A., Bielawski, J., and Bielawska, A. (2010). Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J. Lipid Res. 51, 3074-3087.   DOI   ScienceOn
100 Hanada, K. (2003). Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16-30.   DOI   ScienceOn
101 Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M., and Nishijima, M. (2003). Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803-809.   DOI   ScienceOn
102 Hannun, Y.A. (1994). The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269, 3125-3128.
103 Hayashi, Y., Okino, N., Kakuta, Y., Shikanai, T., Tani, M., Narimatsu, H., and Ito, M. (2007). Klotho-related protein is a novel cytosolic neutral beta-glycosylceramidase. J. Biol. Chem. 282, 30889-30900.   DOI   ScienceOn
104 Holliday, M.W., Jr., Cox, S.B., Kang, M.H., and Maurer, B.J. (2013). C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines. PLoS One 8, e74768.   DOI
105 Hu, X., Yang, D., Zimmerman, M., Liu, F., Yang, J., Kannan, S., Burchert, A., Szulc, Z., Bielawska, A., Ozato, K., et al. (2011). IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res. 71, 2882-2891.   DOI   ScienceOn
106 Meyer zum Buschenfelde, C., Feuerstacke, Y., Gotze, K.S., Scholze, K., and Peschel, C. (2008). GM1 expression of non- Hodgkin's lymphoma determines susceptibility to rituximab treatment. Cancer Res. 68, 5414-5422.   DOI   ScienceOn
107 Mao, C., and Obeid, L.M. (2008). Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim. Biophys. Acta 1781, 424-434.   DOI   ScienceOn
108 Matsuoka, Y., Nagahara, Y., Ikekita, M., and Shinomiya, T. (2003). A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. Br. J. Pharmacol. 138, 1303-1312.   DOI   ScienceOn
109 Meng, A., Luberto, C., Meier, P., Bai, A., Yang, X., Hannun, Y.A., and Zhou, D. (2004). Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells. Exp. Cell Res. 292, 385-392.   DOI   ScienceOn
110 Miyaji, M., Jin, Z.X., Yamaoka, S., Amakawa, R., Fukuhara, S., Sato, S.B., Kobayashi, T., Domae, N., Mimori, T., Bloom, E.T., et al. (2005). Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J. Exp. Med. 202, 249-259.   DOI   ScienceOn
111 Mizutani, Y., Mitsutake, S., Tsuji, K., Kihara, A., and Igarashi, Y. (2009). Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 91, 784-790.   DOI   ScienceOn
112 Mondal, S., Mandal, C., Sangwan, R., Chandra, S., and Mandal, C. (2010). Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol. Cancer 9, 239.
113 Siow, D., and Wattenberg, B. (2011). The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit. Rev. Biochem. Mol. Biol. 46, 365-375.   DOI   ScienceOn
114 Shakor, A.B., Atia, M., Ismail, I.A., Alshehri, A., El-Refaey, H., Kwiatkowska, K., and Sobota, A. (2014). Curcumin induces apoptosis of multidrug-resistant human leukemia HL60 cells by complex pathways leading to ceramide accumulation. Biochim. Biophys. Acta 1841, 1672-1682.   DOI   ScienceOn
115 Shammas, M.A., Neri, P., Koley, H., Batchu, R.B., Bertheau, R.C., Munshi, V., Prabhala, R., Fulciniti, M., Tai, Y.T., Treon, S.P., et al. (2006). Specific killing of multiple myeloma cells by (-)- epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood 108, 2804-2810.   DOI   ScienceOn
116 Shamseddine, A.A., Airola, M.V., and Hannun, Y.A. (2015). Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 57, 24-41.   DOI   ScienceOn
117 Tafesse, F.G., Ternes, P., and Holthuis, J.C. (2006). The multigenic sphingomyelin synthase family. J. Biol. Chem. 281, 29421-29425.   DOI   ScienceOn
118 Tani, M., and Kuge, O. (2009). Sphingomyelin synthase 2 is palmitoylated at the COOH-terminal tail, which is involved in its localization in plasma membranes. Biochem. Biophys. Res. Commun. 381, 328-332.   DOI   ScienceOn
119 Taniguchi, M., and Okazaki, T. (2014). The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration- from cell and animal models to human disorders. Biochim. Biophys. Acta 1841, 692-703.   DOI   ScienceOn
120 Morell, P., and Radin, N.S. (1970). Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A's by brain microsomes. J. Biol. Chem. 245, 342-350.
121 Moylan, J.S., Smith, J.D., Wolf Horrell, E.M., McLean, J.B., Deevska, G.M., Bonnell, M.R., Nikolova-Karakashian, M.N., and Reid, M.B. (2014). Neutral sphingomyelinase-3 mediates TNFstimulated oxidant activity in skeletal muscle. Redox Biol. 2, 910- 920.   DOI   ScienceOn
122 Mullen, T.D., Jenkins, R.W., Clarke, C.J., Bielawski, J., Hannun, Y.A., and Obeid, L.M. (2011). Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events. J. Biol. Chem. 286, 15929-15942.   DOI   ScienceOn
123 Mullen, T.D., and Obeid, L.M. (2012). Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anticancer Agents Med. Chem. 12, 340-363.   DOI
124 Neviani, P., Santhanam, R., Oaks, J.J., Eiring, A.M., Notari, M., Blaser, B.W., Liu, S., Trotta, R., Muthusamy, N., Gambacorti- Passerini, C., et al. (2007). FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J. Clin. Invest. 117, 2408-2421.   DOI   ScienceOn
125 Nilsson, A., and Duan, R.D. (2006). Absorption and lipoprotein transport of sphingomyelin. J. Lipid Res. 47, 154-171.   DOI
126 Nishimura, H., Akiyama, T., Monobe, Y., Matsubara, K., Igarashi, Y., Abe, M., Sugihara, T., and Sadahira, Y. (2010). Expression of sphingosine-1-phosphate receptor 1 in mantle cell lymphoma. Mod. Pathol. 23, 439-449.   DOI   ScienceOn
127 Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M., and Stoffel, W. (1998). Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc. Natl. Acad. Sci. USA 95, 3638- 3643.   DOI
128 Taniguchi, M., Kitatani, K., Kondo, T., Hashimoto-Nishimura, M., Asano, S., Hayashi, A., Mitsutake, S., Igarashi, Y., Umehara, H., Takeya, H., et al. (2012). Regulation of autophagy and its associated cell death by "sphingolipid rheostat": reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J. Biol. Chem. 287, 39898-39910.   DOI
129 Taouji, S., Higa, A., Delom, F., Palcy, S., Mahon, F.X., Pasquet, J.M., Bosse, R., Segui, B., and Chevet, E. (2013). Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J. Biol. Chem. 288, 17190-17201.   DOI   ScienceOn
130 Tettamanti, G., Bassi, R., Viani, P., and Riboni, L. (2003). Salvage pathways in glycosphingolipid metabolism. Biochimie 85, 423- 437.   DOI   ScienceOn
131 Truman, J.P., Garcia-Barros, M., Obeid, L.M., and Hannun, Y.A. (2014). Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim. Biophys. Acta 1841, 1174- 1188.   DOI   ScienceOn
132 Tsukamoto, S., Hirotsu, K., Kumazoe, M., Goto, Y., Sugihara, K., Suda, T., Tsurudome, Y., Suzuki, T., Yamashita, S., Kim, Y., et al. (2012). Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cdelta and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem. J. 443, 525-534.   DOI   ScienceOn
133 Wallington-Beddoe, C.T., Don, A.S., Hewson, J., Qiao, Q., Papa, R.A., Lock, R.B., Bradstock, K.F., and Bendall, L.J. (2012). Disparate in vivo efficacy of FTY720 in xenograft models of Philadelphia positive and negative B-lineage acute lymphoblastic leukemia. PLoS One 7, e36429.   DOI
134 Turzanski, J., Grundy, M., Shang, S., Russell, N., and Pallis, M. (2005). P-glycoprotein is implicated in the inhibition of ceramideinduced apoptosis in TF-1 acute myeloid leukemia cells by modulation of the glucosylceramide synthase pathway. Exp. Hematol. 33, 62-72.   DOI   ScienceOn
135 Vacaru, A.M., Tafesse, F.G., Ternes, P., Kondylis, V., Hermansson, M., Brouwers, J.F., Somerharju, P., Rabouille, C., and Holthuis, J.C. (2009). Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J. Cell Biol. 185, 1013- 1027.   DOI   ScienceOn
136 Wallington-Beddoe, C.T., Hewson, J., Bradstock, K.F., and Bendall, L.J. (2011). FTY720 produces caspase-independent cell death of acute lymphoblastic leukemia cells. Autophagy 7, 707-715.   DOI
137 Wallington-Beddoe, C.T., Powell, J.A., Tong, D., Pitson, S.M., Bradstock, K.F., and Bendall, L.J. (2014). Sphingosine kinase 2 promotes acute lymphoblastic leukemia by enhancing MYC expression. Cancer Res. 74, 2803-2815.
138 Wang, Q., Zou, J., Zhang, X., Mu, H., Yin, Y., and Xie, P. (2014). Glucosylceramide synthase promotes Bcl-2 expression via the ERK signaling pathway in the K562/A02 leukemia drug-resistant cell line. Int. J. Hematol. 100, 559-566.   DOI   ScienceOn
139 Watanabe, M., Kitano, T., Kondo, T., Yabu, T., Taguchi, Y., Tashima, M., Umehara, H., Domae, N., Uchiyama, T., and Okazaki, T. (2004). Increase of nuclear ceramide through caspase- 3-dependent regulation of the "sphingomyelin cycle" in Fasinduced apoptosis. Cancer Res. 64, 1000-1007.   DOI