Sphingosine Kinase Assay System with Fluorescent Detection in High Performance Liquid Chromatography

  • Published : 2006.11.30

Abstract

Activation of Sphingosine kinase (Sphk) increases a bioactive lipid, sphingosine 1-phosphate (S1P) and has been observed in a variety of cancer cells. Therefore, inhibition of Sphk activity was an important target for the development of anticancer drugs. As a searching tool for Sphk inhibitor, we developed fluorescent Sphk activity assay combined with high performance liquid chromatography (HPLC). Previously we established murine teraticarcinoma mutant F9-12 cells which lack S1P lyase and stably express Sphk1. By using F9-12 cells, optimal assay conditions were established as follows; $100\;{\mu}M\;of\;C_{17}-Sph\;and\;30\;{\mu}g$ protein of F9-12 cells lysate in 20 min. Sphingosine analog $C_{17}-Sph$ was efficiently phosphorylated by Sphk activity ($K_{m}:67.08\;{\mu}M,\;V_{max}\;:1507.5\;pmol/min/mg$). New product $C_{17}-S1P$ was separated from S1P in reversed-phase HPLC. In optimized conditions, 300 nM of phorbol 12-myristate 13-acetate (PMA) increased Sphk activity approximately twice while $20\;{\mu}M$ of N,N-dimethylsphingosine (DMS) reduced 70% of Sphk activity in F9-12 cells lysate. In conclusion, we established non-radioactive but convenient Sphk assay system by using HPLC and F9-12 cells.

Keywords

References

  1. Claus, R., Russwurm, S., Meisner, M., Kinscherf, R., and Deigner, H. P., Modulation of the ceramide level, a novel therapeutic concept? Curr. Drug Targets, 1, 185-205 (2000) https://doi.org/10.2174/1389450003349272
  2. Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P.G., Coso, O.A., Gutkind, S., and Spiegel, S., Suppression of ceramidemediated programmed cell death by sphingosine-1- phosphate. Nature, 381, 800-803 (1996) https://doi.org/10.1038/381800a0
  3. Edsall, L. C. and Spiegel, S., Enzymatic measurement of sphingosine 1-phosphate. Anal Biochem., 272, 80-86 (1999) https://doi.org/10.1006/abio.1999.4157
  4. French, K. J., Schrecengost, R. S., Lee, B. D., Zhuang, Y., Smith, S. N., Eberly, J. L., Yun, J. K., and Smith, C. D., Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res., 63, 5962-5969 (2003)
  5. French, K. J., Upson, J. J., Keller, S. N., Zhuang, Y., Yun, J. K., and Smith, C. D., Antitumor activity of sphingosine kinase inhibitors. J. Pharmacol. Exp. Ther., 318, 596-603 (2006) https://doi.org/10.1124/jpet.106.101345
  6. Igarashi, Y., Hakomori, S., Toyokuni, T., Dean, B., Fujita, S., Sugimoto, M., Ogawa, T., el-Ghendy, K., and Racker, E., Effect of chemically well-defined sphingosine and its Nmethyl derivatives on protein kinase C and src kinase activities. Biochemistry, 28, 6796-6800 (1989) https://doi.org/10.1021/bi00443a002
  7. Kariya, Y., Kihara, A., Ikeda, M., Kikuchi, F., Nakamura, S., Hashimoto, S., Choi, C. H., Lee, Y. M., and Igarashi, Y., Products by the sphingosine kinase/sphingosine 1- phosphate (S1P) lyase pathway but not S1P stimulate mitogenesis. Genes Cells, 10, 605-615 (2005) https://doi.org/10.1111/j.1365-2443.2005.00862.x
  8. King, C. C., Zenke, F. T., Dawson, P. E., Dutil, E. M., Newton, A. C., Hemmings, B. A., and Bokoch, G. M., Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1. J. Biol. Chem., 275, 18108-18113 (2000) https://doi.org/10.1074/jbc.M909663199
  9. Kono, K., Tanaka, M., Mizuno, T., Kodama, K., Ogita, T., and Kohama, T., B-535a, b and c, new sphingosine kinase inhibitors, produced by a marine bacterium; taxonomy, fermentation, isolation, physico-chemical properties and structure determination. J. Antibiot. (Tokyo), 53, 753-758 (2000) https://doi.org/10.7164/antibiotics.53.753
  10. Kono, K., Tanaka, M., Ono, Y., Hosoya, T., Ogita, T., and Kohama, T., S-15183a and b, new sphingosine kinase inhibitors, produced by a fungus. J. Antibiot. (Tokyo), 54, 415- 420 (2001) https://doi.org/10.7164/antibiotics.54.415
  11. Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S., and Hla, T., Sphingosine 1- phosphate as a ligand for the G-protein-coupled receptor EDG-1. Science, 279, 1552-1555 (1996) https://doi.org/10.1126/science.279.5356.1552
  12. Mazurek, N., Megidish, T., Hakomori, S., and Igarashi, Y., Regulatory effect of phorbol esters on sphingosine kinase in BALB/C 3T3 fibroblasts (variant A31): demonstration of cell type-specific response-a preliminary note. Biochem Biophys Res Commun., 198, 1-9 (1994) https://doi.org/10.1006/bbrc.1994.1001
  13. McDonald, O. B., Hannun, Y. A., Reynolds, C. H., and Sahyoun, N., Activation of casein kinase II by sphingosine. J. Biol. Chem., 266, 21773-21776 (1991)
  14. Megidish, T., White, T., Takio, K., Titani, K., Igarashi, Y., and Hakomori, S., The signal modulator protein 14-3-3 is a target of sphingosine- or N,N-dimethylsphingosine-dependent kinase in 3T3(A31) cells. Biochem. Biophys. Res. Commun., 216, 739-747 (1995) https://doi.org/10.1006/bbrc.1995.2684
  15. Ogretmen B. and Hannun Y. A., Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist. Updat., 4, 368-377 (2001) https://doi.org/10.1054/drup.2001.0225
  16. Olivera, A. and Spiegel, S., Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature, 365, 557-560 (1993) https://doi.org/10.1038/365557a0
  17. Olivera, A., Kohama, T., Tu, Z., Milstien, S., and Spiegel, S., Purification and characterization of rat kidney sphingosine kinase. J. Biol. Chem., 273,12576-12583 (1998) https://doi.org/10.1074/jbc.273.20.12576
  18. Xia, P., Gamble, J. R., Wang, L., Pitson, S. M., Moretti, P. A., Wattenberg, B. W., D'Andrea, R. J., and Vadas, M. A., An oncogenic role of sphingosine kinase. Curr. Biol., 10, 1527- 1530 (2000) https://doi.org/10.1016/S0960-9822(00)00834-4
  19. Yatomi, Y., Ruan, F., Megidish, T., Toyokuni, T., Hakomori, S., and Igarashi, Y., N,N-dimethylsphingosine inhibition of sphingosine kinase and sphingosine 1-phosphate activity in human platelets. Biochemistry, 35, 626-633 (1996) https://doi.org/10.1021/bi9515533