DOI QR코드

DOI QR Code

Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery

  • Park, Soo-Jin (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Im, Dong-Soon (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University)
  • Received : 2016.07.22
  • Accepted : 2016.10.27
  • Published : 2017.01.01

Abstract

Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, $S1P_{1-5}$. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn's disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications.

Keywords

References

  1. Adachi, K. and Chiba, K. (2008) FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect. Medicin. Chem. 1, 11-23.
  2. An, S., Bleu, T., Huang, W., Hallmark, O. G., Coughlin, S. R. and Goetzl, E. J. (1997) Identification of cDNAs encoding two G proteincoupled receptors for lysosphingolipids. FEBS Lett. 417, 279-282. https://doi.org/10.1016/S0014-5793(97)01301-X
  3. Asle-Rousta, M., Oryan, S., Ahmadiani, A. and Rahnema, M. (2013) Activation of sphingosine 1-phosphate receptor-1 by SEW2871 improves cognitive function in Alzheimer's disease model rats. EXCLI J. 12, 449-461.
  4. Awad, A. S., Ye, H., Huang, L., Li, L., Foss, F. W., Jr., Macdonald, T. L., Lynch, K. R. and Okusa, M. D. (2006) Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am. J. Physiol. Renal Physiol. 290, F1516-F1524. https://doi.org/10.1152/ajprenal.00311.2005
  5. Billich, A., Bornancin, F., Devay, P., Mechtcheriakova, D., Urtz, N. and Billich A1, Bornancin, F., Devay, P., Mechtcheriakova, D., Urtz, N. and Baumruker, T. (2003) Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J. Biol. Chem. 278, 47408-47415. https://doi.org/10.1074/jbc.M307687200
  6. Ble, F. X., Cannet, C., Zurbruegg, S., Gerard, C., Frossard, N., Beckmann, N. and Trifilieff, A. (2009) Activation of the lung $S1P_1$ receptor reduces allergen-induced plasma leakage in mice. Br. J. Pharmacol. 158, 1295-1301. https://doi.org/10.1111/j.1476-5381.2009.00391.x
  7. Bolli, M. H., Abele, S., Binkert, C., Bravo, R., Buchmann, S., Bur, D., Gatfield, J., Hess, P., Kohl, C., Mangold, C., Mathys, B., Menyhart, K., Muller, C., Nayler, O., Scherz, M., Schmidt, G., Sippel, V., Steiner, B., Strasser, D., Treiber, A. and Weller, T. (2010) 2-iminothiazolidin-4-one derivatives as potent, orally active $S1P_1$ receptor agonists. J. Med. Chem. 53, 4198-4211. https://doi.org/10.1021/jm100181s
  8. Brinkmann, V., Cyster, J. G. and Hla, T. (2004) FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am. J. Transplant. 4, 1019-1025. https://doi.org/10.1111/j.1600-6143.2004.00476.x
  9. Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., Bruns, C., Prieschl, E., Baumruker, T., Hiestand, P., Foster, C. A., Zollinger, M. and Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., Bruns, C., Prieschl, E., Baumruker, T., Hiestand, P., Foster, C. A., Zollinger, M. and Lynch, K. R. (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 277, 21453-21457. https://doi.org/10.1074/jbc.C200176200
  10. Bunemann, M., Brandts, B., zu Heringdorf, D. M., van Koppen, C. J., Jakobs, K. H. and Pott, L. (1995) Activation of muscarinic $K^+$ current in guinea-pig atrial myocytes by sphingosine-1-phosphate. J. Physiol. 489, 701-707. https://doi.org/10.1113/jphysiol.1995.sp021084
  11. Calabresi, P. A., Radue, E. W., Goodin, D., Jeffery, D., Rammohan, K. W., Reder, A. T., Vollmer, T., Agius, M. A., Kappos, L., Stites, T., Li, B., Cappiello, L., von Rosenstiel, P. and Lublin, F. D. (2014) Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 545-556. https://doi.org/10.1016/S1474-4422(14)70049-3
  12. Camm, J., Hla, T., Bakshi, R. and Brinkmann, V. (2014) Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am. Heart J. 168, 632-644. https://doi.org/10.1016/j.ahj.2014.06.028
  13. Chiba, K. (2005) FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol. Ther. 108, 308-319. https://doi.org/10.1016/j.pharmthera.2005.05.002
  14. Chiba, K. (2009) New therapeutic approach for autoimmune diseases by the sphingosine 1-phosphate receptor modulator, fingolimod (FTY720). Yakugaku zasshi 129, 655-665. https://doi.org/10.1248/yakushi.129.655
  15. Choi, J. W. and Chun, J. (2013) Lysophospholipids and their receptors in the central nervous system. Biochim. Biophys. Acta 1831, 20-32. https://doi.org/10.1016/j.bbalip.2012.07.015
  16. Choi, J. W., Gardell, S. E., Herr, D. R., Rivera, R., Lee, C. W., Noguchi, K., Teo, S. T., Yung, Y. C., Lu, M., Kennedy, G. and Chun, J. (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 ($S1P_1$) modulation. Proc. Natl. Acad. Sci. U.S.A. 108, 751-756. https://doi.org/10.1073/pnas.1014154108
  17. Choi, O. H., Kim, J. H. and Kinet, J. P. (1996) Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 380, 634-636. https://doi.org/10.1038/380634a0
  18. Cohen, J. A., Arnold, D. L., Comi, G., Bar-Or, A., Gujrathi, S., Hartung, J. P., Cravets, M., Olson, A., Frohna, P. A. and Selmaj, K. W. (2016a) Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 373-381. https://doi.org/10.1016/S1474-4422(16)00018-1
  19. Cohen, J. A., Khatri, B., Barkhof, F., Comi, G., Hartung, H. P., Montalban, X., Pelletier, J., Stites, T., Ritter, S., von Rosenstiel, P., Tomic, D. and Kappos, L. (2016b) Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J. Neurol. Neurosurg. Psychiatr. 87, 468-475. https://doi.org/10.1136/jnnp-2015-310597
  20. D'Ambrosio, D., Freedman, M. S. and Prinz, J. (2016) Ponesimod, a selective $S1P_1$ receptor modulator: a potential treatment for multiple sclerosis and other immune-mediated diseases. Ther. Adv. Chronic Dis. 7, 18-33. https://doi.org/10.1177/2040622315617354
  21. Davenport, A. P., Alexander, S. P., Sharman, J. L., Pawson, A. J., Benson, H. E., Monaghan, A. E., Liew, W. C., Mpamhanga, C. P., Bonner, T. I., Neubig, R. R., Pin, J. P., Spedding, M. and Harmar, A. J. (2013) International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev. 65, 967-986. https://doi.org/10.1124/pr.112.007179
  22. Eltzschig, H. K. and Collard, C. D. (2004) Vascular ischaemia and reperfusion injury. Br. Med. Bull. 70, 71-86. https://doi.org/10.1093/bmb/ldh025
  23. Forrest, M., Sun, S. Y., Hajdu, R., Bergstrom, J., Card, D., Doherty, G., Hale, J., Keohane, C., Meyers, C., Milligan, J., Mills, S., Nomura, N., Rosen, H., Rosenbach, M., Shei, G. J., Singer, II, Tian, M., West, S., White, V., Xie, J., Proia, R. L. and Mandala, S. (2004) Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J. Pharmacol. Exp. Ther. 309, 758-768. https://doi.org/10.1124/jpet.103.062828
  24. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272. https://doi.org/10.1124/mol.63.6.1256
  25. Fryer, R. M., Muthukumarana, A., Harrison, P. C., Nodop Mazurek, S., Chen, R. R., Harrington, K. E., Dinallo, R. M., Horan, J. C., Patnaude, L., Modis, L. K. and Reinhart, G. A. (2012) The clinicallytested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia ($S1P_1$) and hypertension ($S1P_3$) in rat. PLoS ONE 7, e52985. https://doi.org/10.1371/journal.pone.0052985
  26. Fu, Y., Hao, J., Zhang, N., Ren, L., Sun, N., Li, Y. J., Yan, Y., Huang, D., Yu, C. and Shi, F. D. (2014) Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 71, 1092-1101. https://doi.org/10.1001/jamaneurol.2014.1065
  27. Fujishiro, J., Kudou, S., Iwai, S., Takahashi, M., Hakamata, Y., Kinoshita, M., Iwanami, S., Izawa, S., Yasue, T., Hashizume, K., Murakami, T. and Kobayashi, E. (2006) Use of sphingosine-1-phosphate 1 receptor agonist, KRP-203, in combination with a subtherapeutic dose of cyclosporine A for rat renal transplantation. Transplantation 82, 804-812.
  28. Gardell, S. E., Dubin, A. E. and Chun, J. (2006) Emerging medicinal roles for lysophospholipid signaling. Trends Mol. Med. 12, 65-75. https://doi.org/10.1016/j.molmed.2005.12.001
  29. Gergely, P., Nuesslein-Hildesheim, B., Guerini, D., Brinkmann, V., Traebert, M., Bruns, C., Pan, S., Gray, N. S., Hinterding, K., Cooke, N. G., Groenewegen, A., Vitaliti, A., Sing, T., Luttringer, O., Yang, J., Gardin, A., Wang, N., Crumb, W. J., Jr., Saltzman, M., Rosenberg, M. and Wallstrom, E. (2012) The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br. J. Pharmacol. 167, 1035-1047. https://doi.org/10.1111/j.1476-5381.2012.02061.x
  30. Germinario, E., Peron, S., Toniolo, L., Betto, R., Cencetti, F., Donati, C., Bruni, P. and Danieli-Betto, D. (2012) S1P2 receptor promotes mouse skeletal muscle regeneration. J. Appl. Physiol. 113, 707-713. https://doi.org/10.1152/japplphysiol.00300.2012
  31. Gollmann, G., Neuwirt, H., Tripp, C. H., Mueller, H., Konwalinka, G., Heufler, C., Romani, N. and Tiefenthaler, M. (2008) Sphingosine-1-phosphate receptor type-1 agonism impairs blood dendritic cell chemotaxis and skin dendritic cell migration to lymph nodes under inflammatory conditions. Int. Immunol. 20, 911-923. https://doi.org/10.1093/intimm/dxn050
  32. Goodemote, K. A., Mattie, M. E., Berger, A. and Spiegel, S. (1995) Involvement of a pertussis toxin-sensitive G protein in the mitogenic signaling pathways of sphingosine 1-phosphate. J. Biol. Chem. 270, 10272-10277. https://doi.org/10.1074/jbc.270.17.10272
  33. Hashimoto, M., Wang, X., Mao, L., Kobayashi, T., Kawasaki, S., Mori, N., Toews, M. L., Kim, H. J., Cerutis, D. R., Liu, X. and Rennard, S. I. (2008) Sphingosine 1-phosphate potentiates human lung fibroblast chemotaxis through the $S1P_2$ receptor. Am. J. Respir. Cell Mol. Biol. 39, 356-363. https://doi.org/10.1165/rcmb.2006-0427OC
  34. Hofmann, U., Burkard, N., Vogt, C., Thoma, A., Frantz, S., Ertl, G., Ritter, O. and Bonz, A. (2009) Protective effects of sphingosine-1-phosphate receptor agonist treatment after myocardial ischaemia-reperfusion. Cardiovasc. Res. 83, 285-293. https://doi.org/10.1093/cvr/cvp137
  35. Hou, J., Chen, Q., Zhang, K., Cheng, B., Xie, G., Wu, X., Luo, C., Chen, L., Liu, H., Zhao, B., Dai, K. and Fang, X. (2015) Sphingosine 1-phosphate receptor 2 signaling suppresses macrophage phagocytosis and impairs host defense against sepsis. Anesthesiology 123, 409-422. https://doi.org/10.1097/ALN.0000000000000725
  36. Howard, A. D., McAllister, G., Feighner, S. D., Liu, Q., Nargund, R. P., Van der Ploeg, L. H. and Patchett, A. A. (2001) Orphan G-proteincoupled receptors and natural ligand discovery. Trends Pharmacol. Sci. 22, 132-140.
  37. Hughes, J. E., Srinivasan, S., Lynch, K. R., Proia, R. L., Ferdek, P. and Hedrick, C. C. (2008) Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ. Res. 102, 950-958. https://doi.org/10.1161/CIRCRESAHA.107.170779
  38. Huu, D. L., Matsushita, T., Jin, G., Hamaguchi, Y., Hasegawa, M., Takehara, K. and Fujimoto, M. (2013) FTY720 ameliorates murine sclerodermatous chronic graft-versus-host disease by promoting expansion of splenic regulatory cells and inhibiting immune cell infiltration into skin. Arthritis Rheum. 65, 1624-1635. https://doi.org/10.1002/art.37933
  39. Huwiler, A. and Pfeilschifter, J. (2008) New players on the center stage: sphingosine 1-phosphate and its receptors as drug targets. Biochem. Pharmacol. 75, 1893-1900. https://doi.org/10.1016/j.bcp.2007.12.018
  40. Im, D. S. (2002) Orphan G protein-coupled receptors and beyond. Jpn. J. Pharmacol. 90, 101-106. https://doi.org/10.1254/jjp.90.101
  41. Im, D. S. (2003) Linking Chinese medicine and G-protein-coupled receptors. Trends Pharmacol. Sci. 24, 2-4. https://doi.org/10.1016/S0165-6147(02)00012-3
  42. Im, D. S. (2004) Discovery of new G protein-coupled receptors for lipid mediators. J. Lipid. Res. 45, 410-418. https://doi.org/10.1194/jlr.R300006-JLR200
  43. Im, D. S. (2009) New intercellular lipid mediators and their GPCRs: an update. Prostaglandins Other Lipid Medat. 89, 53-56. https://doi.org/10.1016/j.prostaglandins.2009.01.002
  44. Im, D. S. (2010) Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol. Sin. 31, 1213-1222. https://doi.org/10.1038/aps.2010.135
  45. Im, D. S. (2013) Intercellular lipid mediators and GPCR drug discovery. Biomol. Ther. (Seoul) 21, 411-422. https://doi.org/10.4062/biomolther.2013.080
  46. Im, D. S., Fujioka, T., Katada, T., Kondo, Y., Ui, M. and Okajima, F. (1997) Characterization of sphingosine 1-phosphate-induced actions and its signaling pathways in rat hepatocytes. Am. J. Physiol. 272, G1091-G1099.
  47. Im, D. S., Heise, C. E., Ancellin, N., O'Dowd, B. F., Shei, G. J., Heavens, R. P., Rigby, M. R., Hla, T., Mandala, S., McAllister, G., George, S. R. and Lynch, K. R. (2000) Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J. Biol. Chem. 275, 14281-14286. https://doi.org/10.1074/jbc.275.19.14281
  48. Imasawa, T., Koike, K., Ishii, I., Chun, J. and Yatomi, Y. (2010) Blockade of sphingosine 1-phosphate receptor 2 signaling attenuates streptozotocin-induced apoptosis of pancreatic b-cells. Biochem. Biophys. Res. Commun. 392, 207-211. https://doi.org/10.1016/j.bbrc.2010.01.016
  49. Ito, S., Iwaki, S., Koike, K., Yuda, Y., Nagasaki, A., Ohkawa, R., Yatomi, Y., Furumoto, T., Tsutsui, H., Sobel, B. E. and Fujii, S. (2013) Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. Coron. Artery Dis. 24, 642-650.
  50. Jackson, S. J., Giovannoni, G. and Baker, D. (2011) Fingolimod modulates microglial activation to augment markers of remyelination. J. Neuroinflammation 8, 76. https://doi.org/10.1186/1742-2094-8-76
  51. Japtok, L., Schmitz, E. I., Fayyaz, S., Kramer, S., Hsu, L. J. and Kleuser, B. (2015) Sphingosine 1-phosphate counteracts insulin signaling in pancreatic ${\beta}$-cells via the sphingosine 1-phosphate receptor subtype 2. FASEB J. 29, 3357-3369. https://doi.org/10.1096/fj.14-263194
  52. Kaneko, T., Murakami, T., Kawana, H., Takahashi, M., Yasue, T. and Kobayashi, E. (2006) Sphingosine-1-phosphate receptor agonists suppress concanavalin A-induced hepatic injury in mice. Biochem. Biophys. Res. Commun. 345, 85-92. https://doi.org/10.1016/j.bbrc.2006.04.067
  53. Kappos, L., Li, D. K., Stuve, O., Hartung, H. P., Freedman, M. S., Hemmer, B., Rieckmann, P., Montalban, X., Ziemssen, T., Hunter, B., Arnould, S., Wallstrom, E. and Selmaj, K. (2016) Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 73, 1089-1098. https://doi.org/10.1001/jamaneurol.2016.1451
  54. Kappos, L., Radue, E. W., O'Connor, P., Polman, C., Hohlfeld, R., Calabresi, P., Selmaj, K., Agoropoulou, C., Leyk, M., Zhang-Auberson, L., Burtin, P. and Group, F. S. (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387-401. https://doi.org/10.1056/NEJMoa0909494
  55. Kawata, T., Ishizuka, T., Tomura, H., Hisada, T., Dobashi, K., Tsukagoshi, H., Ishiwara, M., Kurose, H., Mori, M. and Okajima, F. (2005) Sphingosine 1-phosphate inhibits migration and RANTES production in human bronchial smooth muscle cells. Biochem. Biophys. Res. Commun. 331, 640-647. https://doi.org/10.1016/j.bbrc.2005.03.223
  56. Kihara, Y., Mizuno, H. and Chun, J. (2015) Lysophospholipid receptors in drug discovery. Exp. Cell Res. 333, 171-177. https://doi.org/10.1016/j.yexcr.2014.11.020
  57. Kim, G. S., Yang, L., Zhang, G., Zhao, H., Selim, M., McCullough, L. D., Kluk, M. J. and Sanchez, T. (2015) Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat. Commun. 6, 7893. https://doi.org/10.1038/ncomms8893
  58. Kim, H. J., Jung, C. G., Dukala, D., Bae, H., Kakazu, R., Wollmann, R. and Soliven, B. (2009) Fingolimod and related compounds in a spontaneous autoimmune polyneuropathy. J. Neuroimmunol. 214, 93-100. https://doi.org/10.1016/j.jneuroim.2009.07.006
  59. Kitada, Y., Kajita, K., Taguchi, K., Mori, I., Yamauchi, M., Ikeda, T., Kawashima, M., Asano, M., Kajita, T., Ishizuka, T., Banno, Y., Kojima, I., Chun, J., Kamata, S., Ishii, I. and Morita, H. (2016) Blockade of sphingosine 1-phosphate receptor 2 signaling attenuates high-fat diet-induced adipocyte hypertrophy and systemic glucose intolerance in mice. Endocrinology 157, 1839-1851. https://doi.org/10.1210/en.2015-1768
  60. Kolahdooz, Z., Nasoohi, S., Asle-Rousta, M., Ahmadiani, A. and Dargahi, L. (2015) Sphingosin-1-phosphate receptor 1: a potential target to inhibit neuroinflammation and restore the sphingosin-1-phosphate metabolism. Can. J. Neurol. Sci. 42, 195-202. https://doi.org/10.1017/cjn.2015.19
  61. Komiya, T., Sato, K., Shioya, H., Inagaki, Y., Hagiya, H., Kozaki, R., Imai, M., Takada, Y., Maeda, T., Kurata, H., Kurono, M., Suzuki, R., Otsuki, K., Habashita, H. and Nakade, S. (2013) Efficacy and immunomodulatory actions of ONO-4641, a novel selective agonist for sphingosine 1-phosphate receptors 1 and 5, in preclinical models of multiple sclerosis. Clin. Exp. Immunol. 171, 54-62. https://doi.org/10.1111/j.1365-2249.2012.04669.x
  62. Lee, J. F., Gordon, S., Estrada, R., Wang, L., Siow, D. L., Wattenberg, B. W., Lominadze, D. and Lee, M. J. (2009) Balance of $S1P_1$ and $S1P_2$ signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature. Am. J. Physiol. Heart Circ. Physiol. 296, H33-H42. https://doi.org/10.1152/ajpheart.00097.2008
  63. Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S. and Hla, T. (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552-1555. https://doi.org/10.1126/science.279.5356.1552
  64. Li, C., Zheng, S., You, H., Liu, X., Lin, M., Yang, L. and Li, L. (2011) Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J. Hepatol. 54, 1205-1213. https://doi.org/10.1016/j.jhep.2010.08.028
  65. Li, Y. J., Chang, G. Q., Liu, Y., Gong, Y., Yang, C., Wood, K., Shi, F. D., Fu, Y. and Yan, Y. (2015) Fingolimod alters inflammatory mediators and vascular permeability in intracerebral hemorrhage. Neurosci. Bull. 31, 755-762. https://doi.org/10.1007/s12264-015-1532-2
  66. Lien, Y. H., Yong, K. C., Cho, C., Igarashi, S. and Lai, L. W. (2006) $S1P_1$-selective agonist, SEW2871, ameliorates ischemic acute renal failure. Kidney Int. 69, 1601-1608. https://doi.org/10.1038/sj.ki.5000360
  67. Liu, X., Yue, S., Li, C., Yang, L., You, H. and Li, L. (2011) Essential roles of sphingosine 1-phosphate receptor types 1 and 3 in human hepatic stellate cells motility and activation. J. Cell. Physiol. 226, 2370-2377. https://doi.org/10.1002/jcp.22572
  68. Lublin, F., Miller, D. H., Freedman, M. S., Cree, B. A., Wolinsky, J. S., Weiner, H., Lubetzki, C., Hartung, H. P., Montalban, X., Uitdehaag, B. M., Merschhemke, M., Li, B., Putzki, N., Liu, F. C., Haring, D. A. and Kappos, L. (2016) Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 387, 1075-1084. https://doi.org/10.1016/S0140-6736(15)01314-8
  69. Lukas, S., Patnaude, L., Haxhinasto, S., Slavin, A., Hill-Drzewi, M., Horan, J. and Modis, L. K. (2014) No differences observed among multiple clinical $S1P_1$ receptor agonists (functional antagonists) in $S1P_1$ receptor down-regulation and degradation. J. Biomol. Screen. 19, 407-416. https://doi.org/10.1177/1087057113502234
  70. Lynch, K. R. and Im, D. S. (1999) Life on the edg. Trends Pharmacol. Sci. 20, 473-475. https://doi.org/10.1016/S0165-6147(99)01401-7
  71. Makide, K., Uwamizu, A., Shinjo, Y., Ishiguro, J., Okutani, M., Inoue, A. and Aoki, J. (2014) Novel lysophosphoplipid receptors: their structure and function. J. Lipid Res. 55, 1986-1995. https://doi.org/10.1194/jlr.R046920
  72. Marsolais, D., Yagi, S., Kago, T., Leaf, N. and Rosen, H. (2011) Modulation of chemokines and allergic airway inflammation by selective local sphingosine-1-phosphate receptor 1 agonism in lungs. Mol. Pharmacol. 79, 61-68. https://doi.org/10.1124/mol.110.066811
  73. Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., Allende, M. L., Proia, R. L. and Cyster, J. G. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355-360. https://doi.org/10.1038/nature02284
  74. Moberly, J. B., Ford, D. M., Zahir, H., Chen, S., Mochizuki, T., Truitt, K. E. and Vollmer, T. L. (2012a) Pharmacological effects of CS-0777, a selective sphingosine 1-phosphate receptor-1 modulator: results from a 12-week, open-label pilot study in multiple sclerosis patients. J. Neuroimmunol. 246, 100-107. https://doi.org/10.1016/j.jneuroim.2012.03.007
  75. Moberly, J. B., Rohatagi, S., Zahir, H., Hsu, C., Noveck, R. J. and Truitt, K. E. (2012b) Pharmacological modulation of peripheral T and B lymphocytes by a selective sphingosine 1-phosphate receptor-1 modulator. J. Clin. Pharmacol. 52, 996-1006. https://doi.org/10.1177/0091270011408728
  76. Moolenaar, W. H. and Hla, T. (2012) SnapShot: Bioactive lysophospholipids. Cell 148, 378-378.e2. https://doi.org/10.1016/j.cell.2012.01.013
  77. Mutoh, T., Rivera, R. and Chun, J. (2012) Insights into the pharmacological relevance of lysophospholipid receptors. Br. J. Pharmacol. 165, 829-844. https://doi.org/10.1111/j.1476-5381.2011.01622.x
  78. Nishi, T., Miyazaki, S., Takemoto, T., Suzuki, K., Iio, Y., Nakajima, K., Ohnuki, T., Kawase, Y., Nara, F., Inaba, S., Izumi, T., Yuita, H., Oshima, K., Doi, H., Inoue, R., Tomisato, W., Kagari, T. and Shimozato, T. (2011) Discovery of CS-0777: a potent, selective, and orally active $S1P_1$ agonist. ACS Med. Chem. Lett. 2, 368-372. https://doi.org/10.1021/ml100301k
  79. Noda, H., Takeuchi, H., Mizuno, T. and Suzumura, A. (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J. Neuroimmunol. 256, 13-18. https://doi.org/10.1016/j.jneuroim.2012.12.005
  80. Nofer, J. R., Bot, M., Brodde, M., Taylor, P. J., Salm, P., Brinkmann, V., van Berkel, T., Assmann, G. and Biessen, E. A. (2007) FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115, 501-508. https://doi.org/10.1161/CIRCULATIONAHA.106.641407
  81. O'Sullivan, C., Schubart, A., Mir, A. K. and Dev, K. K. (2016) The dual $S1PR_1$/$S1PR_5$ drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J. Neuroinflammation 13, 31. https://doi.org/10.1186/s12974-016-0494-x
  82. Ogawa, R., Takahashi, M., Hirose, S., Morimoto, H., Ise, H., Murakami, T., Yasue, T., Kuriyama, K., Hongo, M., Kobayashi, E. and Ikeda, U. (2007) A novel sphingosine-1-phosphate receptor agonist KRP-203 attenuates rat autoimmune myocarditis. Biochem. Biophys. Res. Commun. 361, 621-628. https://doi.org/10.1016/j.bbrc.2007.07.061
  83. Ohno, T., Hasegawa, C., Nakade, S., Kitagawa, J., Honda, N. and Ogawa, M. (2010) The prediction of human response to ONO-4641, a sphingosine 1-phosphate receptor modulator, from preclinical data based on pharmacokinetic-pharmacodynamic modeling. Biopharm. Drug Dispos. 31, 396-406. https://doi.org/10.1002/bdd.719
  84. Okajima, F., Tomura, H., Sho, K., Kimura, T., Sato, K., Im, D. S., Akbar, M. and Kondo, Y. (1997) Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-$Ca^{2+}$ system in FRTL-5 thyroid cells: possible involvement of guanosine triphosphate-binding proteins in the lipid signaling. Endocrinology 138, 220-229. https://doi.org/10.1210/endo.138.1.4883
  85. Okamoto, H., Takuwa, N., Yatomi, Y., Gonda, K., Shigematsu, H. and Takuwa, Y. (1999) EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. Biochem. Biophys. Res. Commun. 260, 203-208. https://doi.org/10.1006/bbrc.1999.0886
  86. Olivera, A. and Spiegel, S. (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365, 557-560. https://doi.org/10.1038/365557a0
  87. Olsson, T., Boster, A., Fernandez, O., Freedman, M. S., Pozzilli, C., Bach, D., Berkani, O., Mueller, M. S., Sidorenko, T., Radue, E. W. and Melanson, M. (2014) Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J. Neurol. Neurosurg. Psychiatr. 85, 1198-1208. https://doi.org/10.1136/jnnp-2013-307282
  88. Oo, M. L., Thangada, S., Wu, M. T., Liu, C. H., Macdonald, T. L., Lynch, K. R., Lin, C. Y. and Hla, T. (2007) Immunosuppressive and antiangiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J. Biol. Chem. 282, 9082-9089. https://doi.org/10.1074/jbc.M610318200
  89. Osada, M., Yatomi, Y., Ohmori, T., Ikeda, H. and Ozaki, Y. (2002) Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. Biochem. Biophys. Res. Commun. 299, 483-487. https://doi.org/10.1016/S0006-291X(02)02671-2
  90. Oskeritzian, C. A., Hait, N. C., Wedman, P., Chumanevich, A., Kolawole, E. M., Price, M. M., Falanga, Y. T., Harikumar, K. B., Ryan, J. J., Milstien, S., Sabbadini, R. and Spiegel, S. (2015) The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J. Allergy Clin. Immunol. 135, 1008-1018.e1. https://doi.org/10.1016/j.jaci.2014.10.044
  91. Oskeritzian, C. A., Price, M. M., Hait, N. C., Kapitonov, D., Falanga, Y. T., Morales, J. K., Ryan, J. J., Milstien, S. and Spiegel, S. (2010) Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema. J. Exp. Med. 207, 465-474. https://doi.org/10.1084/jem.20091513
  92. Overington, J. P., Al-Lazikani, B. and Hopkins, A. L. (2006) How many drug targets are there? Nat. Rev. Drug Discov. 5, 993-996. https://doi.org/10.1038/nrd2199
  93. Pan, S., Mi, Y., Pally, C., Beerli, C., Chen, A., Guerini, D., Hinterding, K., Nuesslein-Hildesheim, B., Tuntland, T., Lefebvre, S., Liu, Y., Gao, W., Chu, A., Brinkmann, V., Bruns, C., Streiff, M., Cannet, C., Cooke, N. and Gray, N. (2006) A monoselective sphingosine-1-phosphate receptor-1 agonist prevents allograft rejection in a stringent rat heart transplantation model. Chem. Biol. 13, 1227-1234. https://doi.org/10.1016/j.chembiol.2006.09.017
  94. Park, S. W., Kim, M., Chen, S. W., Brown, K. M., D'Agati, V. D. and Lee, H. T. (2010) Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through $S1P_1$ receptor activation. Lab. Invest. 90, 1209-1224. https://doi.org/10.1038/labinvest.2010.102
  95. Paugh, S. W., Payne, S. G., Barbour, S. E., Milstien, S. and Spiegel, S. (2003) The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett. 554, 189-193. https://doi.org/10.1016/S0014-5793(03)01168-2
  96. Piali, L., Froidevaux, S., Hess, P., Nayler, O., Bolli, M. H., Schlosser, E., Kohl, C., Steiner, B. and Clozel, M. (2011) The selective sphingosine 1-phosphate receptor 1 agonist ponesimod protects against lymphocyte-mediated tissue inflammation. J. Pharmacol. Exp. Ther. 337, 547-556. https://doi.org/10.1124/jpet.110.176487
  97. Poti, F., Costa, S., Bergonzini, V., Galletti, M., Pignatti, E., Weber, C., Simoni, M. and Nofer, J. R. (2012) Effect of sphingosine 1-phosphate (S1P) receptor agonists FTY720 and CYM5442 on atherosclerosis development in LDL receptor deficient (LDL-$R^{-/-}$) mice. Vascul. Pharmacol. 57, 56-64. https://doi.org/10.1016/j.vph.2012.03.003
  98. Poti, F., Gualtieri, F., Sacchi, S., Weissen-Plenz, G., Varga, G., Brodde, M., Weber, C., Simoni, M. and Nofer, J. R. (2013) KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-$R^{-/-}$ mice. Arterioscler. Thromb. Vasc. Biol. 33, 1505-1512. https://doi.org/10.1161/ATVBAHA.113.301347
  99. Proia, R. L. and Hla, T. (2015) Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J. Clin. Invest. 125, 1379-1387. https://doi.org/10.1172/JCI76369
  100. Pyne, N. J., Tonelli, F., Lim, K. G., Long, J. S., Edwards, J. and Pyne, S. (2012) Sphingosine 1-phosphate signalling in cancer. Biochem. Soc. Trans. 40, 94-100. https://doi.org/10.1042/BST20110602
  101. Rivera-Nieves, J. (2015) Strategies that target leukocyte traffic in inflammatory bowel diseases: recent developments. Curr. Opin. Gastroenterol. 31, 441-448. https://doi.org/10.1097/MOG.0000000000000218
  102. Sammani, S., Moreno-Vinasco, L., Mirzapoiazova, T., Singleton, P. A., Chiang, E. T., Evenoski, C. L., Wang, T., Mathew, B., Husain, A., Moitra, J., Sun, X., Nunez, L., Jacobson, J. R., Dudek, S. M., Natarajan, V. and Garcia, J. G. (2010) Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am. J. Respir. Cell Mol. Biol. 43, 394-402. https://doi.org/10.1165/rcmb.2009-0223OC
  103. Sanchez, T. and Hla, T. (2004) Structural and functional characteristics of S1P receptors. J. Cell. Biochem. 92, 913-922. https://doi.org/10.1002/jcb.20127
  104. Sandborn, W. J., Feagan, B. G., Wolf, D. C., D'Haens, G., Vermeire, S., Hanauer, S. B., Ghosh, S., Smith, H., Cravets, M., Frohna, P. A., Aranda, R., Gujrathi, S. and Olson, A. (2016) Ozanimod induction and maintenance treatment for ulcerative colitis. N. Engl. J. Med. 374, 1754-1762. https://doi.org/10.1056/NEJMoa1513248
  105. Sanna, M. G., Liao, J., Jo, E., Alfonso, C., Ahn, M. Y., Peterson, M. S., Webb, B., Lefebvre, S., Chun, J., Gray, N. and Rosen, H. (2004) Sphingosine 1-phosphate (S1P) receptor subtypes $S1P_1$ and $S1P_3$, respectively, regulate lymphocyte recirculation and heart rate. J. Biol. Chem. 279, 13839-13848. https://doi.org/10.1074/jbc.M311743200
  106. Scott, F. L., Clemons, B., Brooks, J., Brahmachary, E., Powell, R., Dedman, H., Desale, H. G., Timony, G. A., Martinborough, E., Rosen, H., Roberts, E., Boehm, M. F. and Peach, R. J. (2016) Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 ($S1P_1$) and receptor-5 ($S1P_5$) agonist with autoimmune disease-modifying activity. Br. J. Pharmacol. 173, 1778-1792. https://doi.org/10.1111/bph.13476
  107. Selmaj, K., Li, D. K., Hartung, H. P., Hemmer, B., Kappos, L., Freedman, M. S., Stuve, O., Rieckmann, P., Montalban, X., Ziemssen, T., Auberson, L. Z., Pohlmann, H., Mercier, F., Dahlke, F. and Wallstrom, E. (2013) Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 12, 756-767. https://doi.org/10.1016/S1474-4422(13)70102-9
  108. Shea, B. S., Brooks, S. F., Fontaine, B. A., Chun, J., Luster, A. D. and Tager, A. M. (2010) Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am. J. Respir. Cell Mol. Biol. 43, 662-673. https://doi.org/10.1165/rcmb.2009-0345OC
  109. Shimizu, H., Takahashi, M., Kaneko, T., Murakami, T., Hakamata, Y., Kudou, S., Kishi, T., Fukuchi, K., Iwanami, S., Kuriyama, K., Yasue, T., Enosawa, S., Matsumoto, K., Takeyoshi, I., Morishita, Y. and Kobayashi, E. (2005) KRP-203, a novel synthetic immunosuppressant, prolongs graft survival and attenuates chronic rejection in rat skin and heart allografts. Circulation 111, 222-229. https://doi.org/10.1161/01.CIR.0000152101.41037.AB
  110. Skoura, A., Michaud, J., Im, D. S., Thangada, S., Xiong, Y., Smith, J. D. and Hla, T. (2011) Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 81-85. https://doi.org/10.1161/ATVBAHA.110.213496
  111. Song, J., Matsuda, C., Kai, Y., Nishida, T., Nakajima, K., Mizushima, T., Kinoshita, M., Yasue, T., Sawa, Y. and Ito, T. (2008) A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice. J. Pharmacol. Exp. Ther. 324, 276-283.
  112. Stone, M. L., Sharma, A. K., Zhao, Y., Charles, E. J., Huerter, M. E., Johnston, W. F., Kron, I. L., Lynch, K. R. and Laubach, V. E. (2015) Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L1245-L1252. https://doi.org/10.1152/ajplung.00302.2014
  113. Subei, A. M. and Cohen, J. A. (2015) Sphingosine 1-phosphate receptor modulators in multiple sclerosis. CNS Drugs 29, 565-575. https://doi.org/10.1007/s40263-015-0261-z
  114. Takahashi, M., Shimizu, H., Murakami, T., Enosawa, S., Suzuki, C., Takeno, Y., Hakamata, Y., Kudou, S., Izawa, S., Yasue, T. and Kobayashi, E. (2005) A novel immunomodulator KRP-203 combined with cyclosporine prolonged graft survival and abrogated transplant vasculopathy in rat heart allografts. Transplant. Proc. 37, 143-145. https://doi.org/10.1016/j.transproceed.2004.12.107
  115. Thangada, S., Khanna, K. M., Blaho, V. A., Oo, M. L., Im, D. S., Guo, C., Lefrancois, L. and Hla, T. (2010) Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. J. Exp. Med. 207, 1475-1483. https://doi.org/10.1084/jem.20091343
  116. Trifilieff, A., Baur, F. and Fozard, J. R. (2009) Role of sphingosine-1-phosphate (S1P) and the $S1P_2$ receptor in allergen-induced, mast cell-dependent contraction of rat lung parenchymal strips. Naunyn Schmiedebergs Arch. Pharmacol. 380, 303-309. https://doi.org/10.1007/s00210-009-0438-4
  117. Trifilieff, A. and Fozard, J. R. (2012) Sphingosine-1-phosphate-induced airway hyper-reactivity in rodents is mediated by the sphingosine-1-phosphate type 3 receptor. J. Pharmacol. Exp. Ther. 342, 399-406. https://doi.org/10.1124/jpet.112.191585
  118. Vaclavkova, A., Chimenti, S., Arenberger, P., Hollo, P., Sator, P. G., Burcklen, M., Stefani, M. and D'Ambrosio, D. (2014) Oral ponesimod in patients with chronic plaque psoriasis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 384, 2036-2045. https://doi.org/10.1016/S0140-6736(14)60803-5
  119. Van Brocklyn, J. R., Graler, M. H., Bernhardt, G., Hobson, J. P., Lipp, M. and Spiegel, S. (2000) Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95, 2624-2629.
  120. van Koppen, C., Meyer zu Heringdorf, M., Laser, K. T., Zhang, C., Jakobs, K. H., Bunemann, M. and Pott, L. (1996) Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J. Biol. Chem. 271, 2082-2087. https://doi.org/10.1074/jbc.271.4.2082
  121. Wang, M., Lu, L., Liu, Y., Gu, G. and Tao, R. (2014) FTY720 attenuates hypoxia-reoxygenation-induced apoptosis in cardiomyocytes. Exp. Mol. Pathol. 97, 218-224. https://doi.org/10.1016/j.yexmp.2014.07.008
  122. Wei, S. H., Rosen, H., Matheu, M. P., Sanna, M. G., Wang, S. K., Jo, E., Wong, C. H., Parker, I. and Cahalan, M. D. (2005) Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat. Immunol. 6, 1228-1235. https://doi.org/10.1038/ni1269
  123. Whetzel, A. M., Bolick, D. T., Srinivasan, S., Macdonald, T. L., Morris, M. A., Ley, K. and Hedrick, C. C. (2006) Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the $S1P_1$ receptor. Circ. Res. 99, 731-739. https://doi.org/10.1161/01.RES.0000244088.33375.52
  124. Xie, J. H., Nomura, N., Koprak, S. L., Quackenbush, E. J., Forrest, M. J. and Rosen, H. (2003) Sphingosine-1-phosphate receptor agonism impairs the efficiency of the local immune response by altering trafficking of naive and antigen-activated $CD4^+$ T cells. J. Immunol. 170, 3662-3670. https://doi.org/10.4049/jimmunol.170.7.3662
  125. Xu, J., Gray, F., Henderson, A., Hicks, K., Yang, J., Thompson, P. and Oliver, J. (2014) Safety, pharmacokinetics, pharmacodynamics, and bioavailability of GSK2018682, a sphingosine-1-phosphate receptor modulator, in healthy volunteers. Clin. Pharmacol. Drug Dev. 3, 170-178. https://doi.org/10.1002/cpdd.98
  126. Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., Okazaki, H., Okajima, F. and Ohta, H. (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to $Ca^{2+}$ signaling pathway. Biochem. Biophys. Res. Commun. 268, 583-589. https://doi.org/10.1006/bbrc.2000.2162
  127. Yokoo, E., Yatomi, Y., Takafuta, T., Osada, M., Okamoto, Y. and Ozaki, Y. (2004) Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via $S1P_2$: cross-talk between platelets and mast cells. J. Biochem. 135, 673-681. https://doi.org/10.1093/jb/mvh081
  128. You, S., Piali, L., Kuhn, C., Steiner, B., Sauvaget, V., Valette, F., Clozel, M., Bach, J. F. and Chatenoud, L. (2013) Therapeutic use of a selective $S1P_1$ receptor modulator ponesimod in autoimmune diabetes. PLoS ONE 8, e77296. https://doi.org/10.1371/journal.pone.0077296
  129. Zhang, G., Yang, L., Kim, G. S., Ryan, K., Lu, S., O'Donnell, R. K., Spokes, K., Shapiro, N., Aird, W. C., Kluk, M. J., Yano, K. and Sanchez, T. (2013) Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood 122, 443-455. https://doi.org/10.1182/blood-2012-11-467191
  130. Zhang, Z. Y., Zhang, Z. and Schluesener, H. J. (2009a) FTY720 attenuates lesional interleukin-$17^+$ cell accumulation in rat experimental autoimmune neuritis. Neuropathol. Appl. Neurobiol. 35, 487-495. https://doi.org/10.1111/j.1365-2990.2009.01016.x
  131. Zhang, Z. Y., Zhang, Z., Zug, C., Nuesslein-Hildesheim, B., Leppert, D. and Schluesener, H. J. (2009b) AUY954, a selective $S1P_1$ modulator, prevents experimental autoimmune neuritis. J. Neuroimmunol. 216, 59-65. https://doi.org/10.1016/j.jneuroim.2009.09.010
  132. Zhu, Z., Fu, Y., Tian, D., Sun, N., Han, W., Chang, G., Dong, Y., Xu, X., Liu, Q., Huang, D. and Shi, F. D. (2015) Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation 132, 1104-1112. https://doi.org/10.1161/CIRCULATIONAHA.115.016371

Cited by

  1. “Dicing and Splicing” Sphingosine Kinase and Relevance to Cancer vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091891
  2. S1P Lyase Regulation of Thymic Egress and Oncogenic Inflammatory Signaling vol.2017, pp.1466-1861, 2017, https://doi.org/10.1155/2017/7685142
  3. Conceptual Progress for the Improvements in the Selectivity and Efficacy of G Protein-Coupled Receptor Therapeutics: An Overview vol.25, pp.1, 2017, https://doi.org/10.4062/biomolther.2016.262
  4. Sphingosine 1-Phosphate Signaling as a Target in Hepatic Fibrosis Therapy vol.8, pp.1663-9812, 2017, https://doi.org/10.3389/fphar.2017.00579
  5. Arthritic psoriasis during natalizumab treatment: a case report and review of the literature pp.1590-3478, 2017, https://doi.org/10.1007/s10072-017-3112-5
  6. Structure-inspired design of a sphingolipid mimic sphingosine-1-phosphate receptor agonist from a naturally occurring sphingomyelin synthase inhibitor pp.1364-548X, 2018, https://doi.org/10.1039/C8CC05595E
  7. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO vol.17, pp.1536-0121, 2018, https://doi.org/10.1177/1536012118792317
  8. The emerging alliance of sphingosine-1-phosphate signalling and immune cells: from basic mechanisms to implications in hypertension pp.00071188, 2018, https://doi.org/10.1111/bph.14381
  9. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00586
  10. and Contributes to Sphingosine-1-Phosphate Receptor Agonist-Mediated Disease Attenuation vol.87, pp.2, 2019, https://doi.org/10.1128/IAI.00601-18
  11. Siponimod for the treatment of secondary progressive multiple sclerosis vol.20, pp.2, 2019, https://doi.org/10.1080/14656566.2018.1551363
  12. The Role of S1P and the Related Signaling Pathway in the Development of Tissue Fibrosis vol.9, pp.1663-9812, 2019, https://doi.org/10.3389/fphar.2018.01504
  13. T-Cell Accumulation in the Hypertensive Brain: A Role for Sphingosine-1-Phosphate-Mediated Chemotaxis vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030537
  14. Sphingosine Kinases/Sphingosine 1-Phosphate Signaling in Hepatic Lipid Metabolism vol.3, pp.4, 2017, https://doi.org/10.1007/s40495-017-0093-2
  15. Stimulation of S1PR 5 with A-971432, a selective agonist, preserves blood-brain barrier integrity and exerts therapeutic effect in an animal model of Huntington’s disease vol.27, pp.14, 2018, https://doi.org/10.1093/hmg/ddy153
  16. Sphingosine-1-phosphate Receptor Modulators in Multiple Sclerosis vol.13, pp.1, 2017, https://doi.org/10.17925/enr.2018.13.1.25
  17. Emerging small-molecule treatments for multiple sclerosis: focus on B cells vol.8, pp.None, 2017, https://doi.org/10.12688/f1000research.16495.1
  18. Targeting Cytokine Signaling and Lymphocyte Traffic via Small Molecules in Inflammatory Bowel Disease: JAK Inhibitors and S1PR Agonists vol.10, pp.None, 2017, https://doi.org/10.3389/fphar.2019.00212
  19. Unique Roles of Sphingolipids in Selected Malignant and Nonmalignant Lesions of Female Reproductive System vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4376583
  20. Cell Trafficking Interference in Inflammatory Bowel Disease: Therapeutic Interventions Based on Basic Pathogenesis Concepts vol.25, pp.2, 2019, https://doi.org/10.1093/ibd/izy269
  21. Sphingosine-1-Phosphate and Macrophage Biology-How the Sphinx Tames the Big Eater vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.01706
  22. Deficiency of Sphingosine-1-Phosphate Receptor 2 (S1P2) Attenuates Bleomycin-Induced Pulmonary Fibrosis vol.27, pp.3, 2017, https://doi.org/10.4062/biomolther.2018.131
  23. Pro-Inflammatory Role of S1P3 in Macrophages vol.27, pp.4, 2017, https://doi.org/10.4062/biomolther.2018.215
  24. The Role and Mechanism of S1PR5 in Colon Cancer vol.12, pp.None, 2020, https://doi.org/10.2147/cmar.s239118
  25. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts vol.63, pp.5, 2017, https://doi.org/10.1021/acs.jmedchem.9b01105
  26. Modulation of sphingosine-1-phosphate in ulcerative colitis vol.20, pp.4, 2020, https://doi.org/10.1080/14712598.2020.1732919
  27. Ceramide and Sphingosine 1-Phosphate in Liver Diseases vol.43, pp.5, 2020, https://doi.org/10.14348/molcells.2020.0054
  28. Molecular Effects of FDA-Approved Multiple Sclerosis Drugs on Glial Cells and Neurons of the Central Nervous System vol.21, pp.12, 2017, https://doi.org/10.3390/ijms21124229
  29. In vivo Characterization of Four 18F-Labeled S1PR1 Tracers for Neuroinflammation vol.22, pp.5, 2017, https://doi.org/10.1007/s11307-020-01514-8
  30. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle vol.10, pp.10, 2017, https://doi.org/10.1098/rsob.200161
  31. Positron Emission Tomography in the Inflamed Cerebellum: Addressing Novel Targets among G Protein-Coupled Receptors and Immune Receptors vol.12, pp.10, 2017, https://doi.org/10.3390/pharmaceutics12100925
  32. Blockage of sphingosine-1-phosphate receptor 2 attenuates 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice vol.41, pp.11, 2020, https://doi.org/10.1038/s41401-020-0412-8
  33. Angiogenesis and Blood-Brain Barrier Permeability in Vascular Remodeling after Stroke vol.18, pp.12, 2020, https://doi.org/10.2174/1570159x18666200720173316
  34. Experimental Pharmacological Management of Psoriasis vol.13, pp.None, 2021, https://doi.org/10.2147/jep.s265632
  35. Thinking Outside the Ischemia Box: Advancements in the Use of Multiple Sclerosis Drugs in Ischemic Stroke vol.10, pp.4, 2021, https://doi.org/10.3390/jcm10040630
  36. Role of the SphK‐S1P‐S1PRs pathway in invasion of the nervous system by SARS‐CoV‐2 infection vol.48, pp.5, 2021, https://doi.org/10.1111/1440-1681.13483
  37. Safety of S1P Modulators in Patients with Immune-Mediated Diseases: A Systematic Review and Meta-Analysis vol.44, pp.6, 2017, https://doi.org/10.1007/s40264-021-01057-z
  38. Targeting Sphingosine-1-Phosphate Signaling in Immune-Mediated Diseases: Beyond Multiple Sclerosis vol.81, pp.9, 2021, https://doi.org/10.1007/s40265-021-01528-8
  39. Inflammatory interactions between degenerated intervertebral discs and microglia: Implication of sphingosine‐1‐phosphate signaling vol.39, pp.7, 2021, https://doi.org/10.1002/jor.24827
  40. Small Molecule Drugs in Inflammatory Bowel Diseases vol.14, pp.7, 2021, https://doi.org/10.3390/ph14070637
  41. Therapeutic Development Based on the Immunopathogenic Mechanisms of Psoriasis vol.13, pp.7, 2017, https://doi.org/10.3390/pharmaceutics13071064
  42. Geniposide downregulates the VEGF/SphK1/S1P pathway and alleviates angiogenesis in rheumatoid arthritis in vivo and in vitro vol.35, pp.8, 2017, https://doi.org/10.1002/ptr.7130
  43. Reviewing the Significance of Blood-Brain Barrier Disruption in Multiple Sclerosis Pathology and Treatment vol.22, pp.16, 2017, https://doi.org/10.3390/ijms22168370
  44. Suppressive Effect of CYM50358 S1P4 Antagonist on Mast Cell Degranulation and Allergic Asthma in Mice vol.29, pp.5, 2021, https://doi.org/10.4062/biomolther.2020.206
  45. Potential therapeutic agents for ischemic white matter damage vol.149, pp.None, 2021, https://doi.org/10.1016/j.neuint.2021.105116
  46. Intrinsic drug potential of oxazolo[5,4‐d]pyrimidines and oxazolo[4,5‐d]pyrimidines vol.98, pp.4, 2017, https://doi.org/10.1111/cbdd.13911
  47. Neuroprotective Effects of Fingolimod in a Cellular Model of Optic Neuritis vol.10, pp.11, 2021, https://doi.org/10.3390/cells10112938