Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0054

Ceramide and Sphingosine 1-Phosphate in Liver Diseases  

Park, Woo-Jae (Department of Biochemistry, College of Medicine, Gachon University)
Song, Jae-Hwi (Department of Life Science, Gachon University)
Kim, Goon-Tae (Department of Life Science, Gachon University)
Park, Tae-Sik (Department of Life Science, Gachon University)
Abstract
The liver is an important organ in the regulation of glucose and lipid metabolism. It is responsible for systemic energy homeostasis. When energy need exceeds the storage capacity in the liver, fatty acids are shunted into nonoxidative sphingolipid biosynthesis, which increases the level of cellular ceramides. Accumulation of ceramides alters substrate utilization from glucose to lipids, activates triglyceride storage, and results in the development of both insulin resistance and hepatosteatosis, increasing the likelihood of major metabolic diseases. Another sphingolipid metabolite, sphingosine 1-phosphate (S1P) is a bioactive signaling molecule that acts via S1P-specific G protein coupled receptors. It regulates many cellular and physiological events. Since an increase in plasma S1P is associated with obesity, it seems reasonable that recent studies have provided evidence that S1P is linked to lipid pathophysiology, including hepatosteatosis and fibrosis. Herein, we review recent findings on ceramides and S1P in obesity-mediated liver diseases and the therapeutic potential of these sphingolipid metabolites.
Keywords
ceramide; fibrosis; insulin resistance; obesity; sphingosine 1-phosphate; steatosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nagahashi, M., Takabe, K., Liu, R., Peng, K., Wang, X., Wang, Y., Hait, N.C., Wang, X., Allegood, J.C., Yamada, A., et al. (2015). Conjugated bile acidactivated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology 61, 1216-1226.   DOI
2 Nishi, T., Kobayashi, N., Hisano, Y., Kawahara, A., and Yamaguchi, A. (2014). Molecular and physiological functions of sphingosine 1-phosphate transporters. Biochim. Biophys. Acta 1841, 759-765.   DOI
3 Park, S.J. and Im, D.S. (2017). Sphingosine 1-phosphate receptor modulators and drug discovery. Biomol. Ther. 25, 80-90.   DOI
4 Park, W.J., Park, J.W., Merrill, A.H., Storch, J., Pewzner-Jung, Y., and Futerman, A.H. (2014). Hepatic fatty acid uptake is regulated by the sphingolipid acyl chain length. Biochim. Biophys. Acta 1841, 1754-1766.   DOI
5 Pessayre, D., Mansouri, A., and Fromenty, B. (2002). Nonalcoholic steatosis and steatohepatitis. V. Mitochondrial dysfunction in steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G193-G199.   DOI
6 Postic, C. and Girard, J. (2008). Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829-838.   DOI
7 Bashiardes, S., Shapiro, H., Rozin, S., Shibolet, O., and Elinav, E. (2016). Nonalcoholic fatty liver and the gut microbiota. Mol. Metab. 5, 782-794.   DOI
8 Becker, S., Kinny-Koster, B., Bartels, M., Scholz, M., Seehofer, D., Berg, T., Engelmann, C., Thiery, J., Ceglarek, U., and Kaiser, T. (2017). Low sphingosine-1-phosphate plasma levels are predictive for increased mortality in patients with liver cirrhosis. PLoS One 12, e0174424.   DOI
9 Pyne, N.J. and Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 10, 489-503.   DOI
10 Powell, D.J., Hajduch, E., Kular, G., and Hundal, H.S. (2003). Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol. Cell. Biol. 23, 7794-7808.   DOI
11 Qi, Y., Chen, J., Lay, A., Don, A., Vadas, M., and Xia, P. (2013). Loss of sphingosine kinase 1 predisposes to the onset of diabetes via promoting pancreatic $\beta$-cell death in diet-induced obese mice. FASEB J. 27, 4294-4304.   DOI
12 Watt, M.J., Barnett, A.C., Bruce, C.R., Schenk, S., Horowitz, J.F., and Hoy, A.J. (2012). Regulation of plasma ceramide levels with fatty acid oversupply: evidence that the liver detects and secretes de novo synthesised ceramide. Diabetologia 55, 2741-2746.   DOI
13 Wang, C.N., O'Brien, L., and Brindley, D.N. (1998). Effects of cell-permeable ceramides and tumor necrosis factor-alpha on insulin signaling and glucose uptake in 3T3-L1 adipocytes. Diabetes 47, 24-31.   DOI
14 Wang, R., Ding, Q., De Assuncao, T.M., Mounajjed, T., Maiers, J.L., Dou, C., Cao, S., Yaqoob, U., Huebert, R.C., and Shah, V.H. (2017a). Hepatic stellate cell selective disruption of dynamin-2 GTPase increases murine fibrogenesis through up-regulation of sphingosine-1 phosphate-induced cell migration. Am. J. Pathol. 187, 134-145.   DOI
15 Wang, Y., Harashima, S.I., Liu, Y., Usui, R., and Inagaki, N. (2017b). Sphingosine kinase 1-interacting protein is a novel regulator of glucosestimulated insulin secretion. Sci. Rep. 7, 779.   DOI
16 Brunati, A.M., Tibaldi, E., Carraro, A., Gringeri, E., D'Amico, F., Jr, Toninello, A., Massimino, M.L., Pagano, M.A., Nalesso, G., and Cillo, U. (2008). Crosstalk between PDGF and S1P signalling elucidates the inhibitory effect and potential antifibrotic action of the immunomodulator FTY720 in activated HSC-cultures. Biochim. Biophys. Acta 1783, 347-359.   DOI
17 Bissell, D.M. (1998). Hepatic fibrosis as wound repair: a progress report. J. Gastroenterol. 33, 295-302.   DOI
18 Bradbury, M.W. (2006). Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G194-G198.   DOI
19 Brinkmann, V., Billich, A., Baumruker, T., Heining, P., Schmouder, R., Francis, G., Aradhye, S., and Burtin, P. (2010). Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883-897.   DOI
20 Chang, N., Ge, J., Xiu, L., Zhao, Z., Duan, X., Tian, L., Xie, J., Yang, L., and Li, L. (2017). HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis. J. Mol. Med. 95, 69-82.   DOI
21 Chaurasia, B., Tippetts, T.S., Mayoral Monibas, R., Liu, J., Li, Y., Wang, L., Wilkerson, J.L., Sweeney, C.R., Pereira, R.F., et al. (2019). Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386-392.   DOI
22 Rohrbach, T., Maceyka, M., and Spiegel, S. (2017). Sphingosine kinase and sphingosine-1-phosphate in liver pathobiology. Crit. Rev. Biochem. Mol. Biol. 52, 543-553.   DOI
23 Xia, J.Y., Holland, W.L., Kusminski, C.M., Sun, K., Sharma, A.X., Pearson, M.J., Sifuentes, A.J., McDonald, J.G., Gordillo, R., and Scherer, P.E. (2015). Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266-278.   DOI
24 Xiu, L., Chang, N., Yang, L., Liu, X., Yang, L., Ge, J., and Li, L. (2015). Intracellular sphingosine 1-phosphate contributes to collagen expression of hepatic myofibroblasts in human liver fibrosis independent of its receptors. Am. J. Pathol. 185, 387-398.   DOI
25 Xu, W., Lu, C., Zhang, F., Shao, J., and Zheng, S. (2016). Dihydroartemisinin restricts hepatic stellate cell contraction via an FXR-S1PR2-dependent mechanism. IUBMB Life 68, 376-387.   DOI
26 Chen, J., Wang, W., Qi, Y., Kaczorowski, D., McCaughan, G.W., Gamble, J.R., Don, A.S., Gao, X., Vadas, M.A., and Xia, P. (2016a). Deletion of sphingosine kinase 1 ameliorates hepatic steatosis in diet-induced obese mice: role of $PPAR\gamma$. Biochim. Biophys. Acta 1861, 138-147.   DOI
27 Raichur, S., Wang, S.T., Chan, P.W., Li, Y., Ching, J., Chaurasia, B., Dogra, S., Ohman, M.K., Takeda, K., Sugii, S., et al. (2014). CerS2 haploinsufficiency inhibits $\beta$-Oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687-695.   DOI
28 Rinella, M.E. and Sanyal, A.J. (2016). Management of NAFLD: a stagebased approach. Nat. Rev. Gastroenterol. Hepatol. 13, 196-205.   DOI
29 Rippe, R.A. and Brenner, D.A. (2004). From quiescence to activation: gene regulation in hepatic stellate cells. Gastroenterology 127, 1260-1262.   DOI
30 Rohrbach, T.D., Asgharpour, A., Maczis, M.A., Montefusco, D., Cowart, L.A., Bedossa, P., Sanyal, A.J., and Spiegel, S. (2019). FTY720/fingolimod decreases hepatic steatosis and expression of fatty acid synthase in dietinduced nonalcoholic fatty liver disease in mice. J. Lipid Res. 60, 1311-1322.   DOI
31 Rutkute, K., Asmis, R.H., and Nikolova-Karakashian, M.N. (2007a). Regulation of neutral sphingomyelinase-2 by GSH: a new insight to the role of oxidative stress in aging-associated inflammation. J. Lipid Res. 48, 2443-2452.   DOI
32 Deevska, G.M., Rozenova, K.A., Giltiay, N.V., Chambers, M.A., White, J., Boyanovsky, B.B., Wei, J., Daugherty, A., Smart, E.J., Reid, M.B., et al. (2009). Acid sphingomyelinase deficiency prevents diet-induced hepatic triacylglycerol accumulation and hyperglycemia in mice. J. Biol. Chem. 284, 8359-8368.   DOI
33 Chen, Q., Denard, B., Lee, C.E., Han, S., Ye, J.S., and Ye, J. (2016b). Inverting the topology of a transmembrane protein by regulating the translocation of the first transmembrane helix. Mol. Cell 63, 567-578.   DOI
34 Chen, T.C., Lee, R.A., Tsai, S.L., Kanamaluru, D., Gray, N.E., Yiv, N., Cheang, R.T., Tan, J.H., Lee, J.Y., Fitch, M.D., et al. (2019). An ANGPTL4-ceramideprotein kinase Czeta axis mediates chronic glucocorticoid exposureinduced hepatic steatosis and hypertriglyceridemia in mice. J. Biol. Chem. 294, 9213-9224.   DOI
35 Cohen, J.C., Horton, J.D., and Hobbs, H.H. (2011). Human fatty liver disease: old questions and new insights. Science 332, 1519-1523.   DOI
36 Denard, B., Lee, C., and Ye, J. (2012). Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. Elife 1, e00090.   DOI
37 Ding, B.S., Liu, C.H., Sun, Y., Chen, Y., Swendeman, S.L., Jung, B., Chavez, D., Cao, Z., Christoffersen, C., Nielsen, L.B., et al. (2016). HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver. JCI Insight 1, e87058.
38 Li, C., Kong, Y., Wang, H., Wang, S., Yu, H., Liu, X., Yang, L., Jiang, X., Li, L., and Li, L. (2009b). Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J. Hepatol. 50, 1174-1183.   DOI
39 Lee, S.Y., Hong, I.K., Kim, B.R., Shim, S.M., Lee, J.S., Lee, H.Y., Choi, C.S., Kim, B.K., and Park, T.S. (2015). Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology 62, 135-146.   DOI
40 Li, C., Jiang, X., Yang, L., Liu, X., Yue, S., and Li, L. (2009a). Involvement of sphingosine 1-phosphate (SIP)/S1P3 signaling in cholestasis-induced liver fibrosis. Am. J. Pathol. 175, 1464-1472.   DOI
41 Li, C., Zheng, S., You, H., Liu, X., Lin, M., Yang, L., and Li, L. (2011). Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J. Hepatol. 54, 1205-1213.   DOI
42 Li, Y., Dong, J., Ding, T., Kuo, M.S., Cao, G., Jiang, X.C., and Li, Z. (2013). Sphingomyelin synthase 2 activity and liver steatosis: an effect of ceramide-mediated peroxisome proliferator-activated receptor $\gamma$2 suppression. Arterioscler. Thromb. Vasc. Biol. 33, 1513-1520.   DOI
43 Liangpunsakul, S., Rahmini, Y., Ross, R.A., Zhao, Z., Xu, Y., and Crabb, D.W. (2012). Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G515-G523.   DOI
44 Lindenmeyer, C.C. and McCullough, A.J. (2018). The natural history of nonalcoholic fatty liver disease-an evolving view. Clin. Liver Dis. 22, 11-21.   DOI
45 Dyckman, A.J. (2017). Modulators of sphingosine-1-phosphate pathway biology: recent advances of sphingosine-1-phosphate receptor 1 (S1P1) agonists and future perspectives. J. Med. Chem. 60, 5267-5289.   DOI
46 Rutkute, K., Karakashian, A.A., Giltiay, N.V., Dobierzewska, A., and Nikolova-Karakashian, M.N. (2007b). Aging in rat causes hepatic hyperresposiveness to interleukin-1beta which is mediated by neutral sphingomyelinase-2. Hepatology 46, 1166-1176.   DOI
47 Samad, F., Hester, K.D., Yang, G., Hannun, Y.A., and Bielawski, J. (2006). Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 55, 2579-2587.   DOI
48 Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., Kono, M., Tsuji, S., Daniotti, J.L., Werth, N., et al. (2003). Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl. Acad. Sci. U. S. A. 100, 3445-3449.   DOI
49 Yang, G., Badeanlou, L., Bielawski, J., Roberts, A.J., Hannun, Y.A., and Samad, F. (2009). Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 297, E211-E224.   DOI
50 Yang, L., Chang, N., Liu, X., Han, Z., Zhu, T., Li, C., Yang, L., and Li, L. (2012). Bone marrow-derived mesenchymal stem cells differentiate to hepatic myofibroblasts by transforming growth factor-beta1 via sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis. Am. J. Pathol. 181, 85-97.   DOI
51 Friedman, S.L. (2008). Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655-1669.   DOI
52 Gao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., Zhu, J., Ma, L., Guo, J., Shi, H., et al. (2016). Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-$\alpha$ mediated NF-$\kappa$B pathway. J. Cell. Mol. Med. 20, 2318-2327.   DOI
53 Longato, L., Tong, M., Wands, J.R., and de la Monte, S.M. (2012). High fat diet induced hepatic steatosis and insulin resistance: role of dysregulated ceramide metabolism. Hepatol. Res. 42, 412-427.   DOI
54 Yang, L., Han, Z., Tian, L., Mai, P., Zhang, Y., Wang, L., and Li, L. (2015). Sphingosine 1-phosphate receptor 2 and 3 mediate bone marrowderived monocyte/macrophage motility in cholestatic liver injury in mice. Sci. Rep. 5, 13423.   DOI
55 Yang, L., Yue, S., Yang, L., Liu, X., Han, Z., Zhang, Y., and Li, L. (2013). Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J. Hepatol. 59, 114-123.   DOI
56 Yano, M., Watanabe, K., Yamamoto, T., Ikeda, K., Senokuchi, T., Lu, M., Kadomatsu, T., Tsukano, H., Ikawa, M., Okabe, M., et al. (2011). Mitochondrial dysfunction and increased reactive oxygen species impair insulin secretion in sphingomyelin synthase 1-null mice. J. Biol. Chem. 286, 3992-4002.   DOI
57 Ying, W., Riopel, M., Bandyopadhyay, G., Dong, Y., Birmingham, A., Seo, J.B., Ofrecio, J.M., Wollam, J., Hernandez-Carretero, A., Fu, W., et al. (2017). Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171, 372-384.e12.   DOI
58 Fucho, R., Martinez, L., Baulies, A., Torres, S., Tarrats, N., Fernandez, A., Ribas, V., Astudillo, A.M., Balsinde, J., Garcia-Roves, P., et al. (2014). ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. J. Hepatol. 61, 1126-1134.   DOI
59 Gao, D., Pararasa, C., Dunston, C.R., Bailey, C.J., and Griffiths, H.R. (2012). Palmitate promotes monocyte atherogenicity via de novo ceramide synthesis. Free Radic. Biol. Med. 53, 796-806.   DOI
60 Geng, T., Sutter, A., Harland, M.D., Law, B.A., Ross, J.S., Lewin, D., Palanisamy, A., Russo, S.B., Chavin, K.D., and Cowart, L.A. (2015). SphK1 mediates hepatic inflammation in a mouse model of NASH induced by high saturated fat feeding and initiates proinflammatory signaling in hepatocytes. J. Lipid Res. 56, 2359-2371.   DOI
61 Gonzalez-Fernandez, B., Sanchez, D.I., Crespo, I., San-Miguel, B., Alvarez, M., Tunon, M.J., and Gonzalez-Gallego, J. (2017). Inhibition of the SphK1/ S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells. BioFactors 43, 272-282.   DOI
62 Schuppan, D. and Afdhal, N.H. (2008). Liver cirrhosis. Lancet 371, 838-851.   DOI
63 Sato, M., Ikeda, H., Uranbileg, B., Kurano, M., Saigusa, D., Aoki, J., Maki, H., Kudo, H., Hasegawa, K., Kokudo, N., et al. (2016). Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human. Sci. Rep. 6, 32119.   DOI
64 Sattar, N., Forrest, E., and Preiss, D. (2014). Non-alcoholic fatty liver disease. BMJ 349, g4596.   DOI
65 Schilling, J.D., Machkovech, H.M., He, L., Sidhu, R., Fujiwara, H., Weber, K., Ory, D.S., and Schaffer, J.E. (2013). Palmitate and lipopolysaccharide trigger synergistic ceramide production in primary macrophages. J. Biol. Chem. 288, 2923-2932.   DOI
66 Shea, B.S. and Tager, A.M. (2012). Sphingolipid regulation of tissue fibrosis. Open Rheumatol. J. 6, 123-129.   DOI
67 Stoffel, W., Jenke, B., Holz, B., Binczek, E., Gunter, R.H., Knifka, J., Koebke, J., and Niehoff, A. (2007). Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. Am. J. Pathol. 171, 153-161.   DOI
68 Maceyka, M., Harikumar, K.B., Milstien, S., and Spiegel, S. (2012). Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 22, 50-60.   DOI
69 Gosejacob, D., Jäger, P.S., Vom Dorp, K., Frejno, M., Carstensen, A.C., Köhnke, M., Degen, J., Dörmann, P., and Hoch, M. (2016). Ceramide synthase 5 is essential to maintain C16:0-ceramide pools and contributes to the development of diet-induced obesity. J. Biol. Chem. 291, 6989-7003.   DOI
70 Ma, M.M., Chen, J.L., Wang, G.G., Wang, H., Lu, Y., Li, J.F., Yi, J., Yuan, Y.J., Zhang, Q.W., Mi, J., et al. (2007). Sphingosine kinase 1 participates in insulin signalling and regulates glucose metabolism and homeostasis in KK/Ay diabetic mice. Diabetologia 50, 891-900.   DOI
71 Maceyka, M. and Spiegel, S. (2014). Sphingolipid metabolites in inflammatory disease. Nature 510, 58-67.   DOI
72 Mari, M., Colell, A., Morales, A., Caballero, F., Moles, A., Fernandez, A., Terrones, O., Basanez, G., Antonsson, B., Garcia-Ruiz, C., et al. (2008). Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-kappaB activation. Gastroenterology 134, 1507-1520.   DOI
73 Mauer, A.S., Hirsova, P., Maiers, J.L., Shah, V.H., and Malhi, H. (2017). Inhibition of sphingosine 1-phosphate signaling ameliorates murine nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G300-G313.   DOI
74 Merrill, A.H., Jr. (2002). De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J. Biol. Chem. 277, 25843-25846.   DOI
75 Hajduch, E., Balendran, A., Batty, I.H., Litherland, G.J., Blair, A.S., Downes, C.P., and Hundal, H.S. (2001). Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 44, 173-183.   DOI
76 Summers, S.A., Garza, L.A., Zhou, H., and Birnbaum, M.J. (1998). Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol. Cell. Biol. 18, 5457-5464.   DOI
77 Tagami, S., Inokuchi Ji, J., Kabayama, K., Yoshimura, H., Kitamura, F., Uemura, S., Ogawa, C., Ishii, A., Saito, M., Ohtsuka, Y., et al. (2002). Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 277, 3085-3092.   DOI
78 Sanyal, A.J. and Pacana, T. (2015). A lipidomic readout of disease progression in a diet-induced mouse model of nonalcoholic fatty liver disease. Trans. Am. Clin. Climatol. Assoc. 126, 271-288.
79 Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L., and Wymer, M. (2016). Global epidemiology of nonalcoholic fatty liver disease-Metaanalytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73-84.   DOI
80 Zhao, H., Przybylska, M., Wu, I.H., Zhang, J., Maniatis, P., Pacheco, J., Piepenhagen, P., Copeland, D., Arbeeny, C., Shayman, J.A., et al. (2009). Inhibiting glycosphingolipid synthesis ameliorates hepatic steatosis in obese mice. Hepatology 50, 85-93.   DOI
81 Hastie, C.E., Padmanabhan, S., Slack, R., Pell, A.C., Oldroyd, K.G., Flapan, A.D., Jennings, K.P., Irving, J., Eteiba, H., Dominiczak, A.F., et al. (2010). Obesity paradox in a cohort of 4880 consecutive patients undergoing percutaneous coronary intervention. Eur. Heart J. 31, 222-226.   DOI
82 Higuchi, H. and Gores, G.J. (2003). Mechanisms of liver injury: an overview. Curr. Mol. Med. 3, 483-490.   DOI
83 Holland, W.L., Brozinick, J.T., Wang, L.P., Hawkins, E.D., Sargent, K.M., Liu, Y., Narra, K., Hoehn, K.L., Knotts, T.A., Siesky, A., et al. (2007). Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167-179.   DOI
84 Ichi, I., Nakahara, K., Fujii, K., Iida, C., Miyashita, Y., and Kojo, S. (2007). Increase of ceramide in the liver and plasma after carbon tetrachloride intoxication in the rat. J. Nutr. Sci. Vitaminol. 53, 53-56.   DOI
85 Ikeda, H., Watanabe, N., Ishii, I., Shimosawa, T., Kume, Y., Tomiya, T., Inoue, Y., Nishikawa, T., Ohtomo, N., Tanoue, Y., et al. (2009). Sphingosine 1-phosphate regulates regeneration and fibrosis after liver injury via sphingosine 1-phosphate receptor 2. J. Lipid Res. 50, 556-564.   DOI
86 Zinda, M.J., Vlahos, C.J., and Lai, M.T. (2001). Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87mg cells. Biochem. Biophys. Res. Commun. 280, 1107-1115.   DOI
87 Mitsutake, S., Zama, K., Yokota, H., Yoshida, T., Tanaka, M., Mitsui, M., Ikawa, M., Okabe, M., Tanaka, Y., Yamashita, T., et al. (2011). Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes. J. Biol. Chem. 286, 28544-28555.   DOI
88 Moles, A., Tarrats, N., Morales, A., Dominguez, M., Bataller, R., Caballeria, J., Garcia-Ruiz, C., Fernandez-Checa, J.C., and Mari, M. (2010). Acidic sphingomyelinase controls hepatic stellate cell activation and in vivo liver fibrogenesis. Am. J. Pathol. 177, 1214-1224.   DOI
89 Zhao, H., Przybylska, M., Wu, I.H., Zhang, J., Siegel, C., Komarnitsky, S., Yew, N.S., and Cheng, S.H. (2007). Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 56, 1210-1218.   DOI
90 Zigdon, H., Kogot-Levin, A., Park, J.W., Goldschmidt, R., Kelly, S., Merrill, A.H., Scherz, A., Pewzner-Jung, Y., Saada, A., and Futerman, A.H. (2013). Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J. Biol. Chem. 288, 4947-4956.   DOI
91 Bataller, R. and Brenner, D.A. (2005). Liver fibrosis. J. Clin. Invest. 115, 209-218.   DOI
92 Liu, X., Yue, S., Li, C., Yang, L., You, H., and Li, L. (2011). Essential roles of sphingosine 1-phosphate receptor types 1 and 3 in human hepatic stellate cells motility and activation. J. Cell. Physiol. 226, 2370-2377.   DOI
93 Schwalm, S., Pfeilschifter, J., and Huwiler, A. (2013). Sphingosine-1-phosphate: a Janus-faced mediator of fibrotic diseases. Biochim. Biophys. Acta 1831, 239-250.   DOI
94 Unger, R.H. (2003). Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol. Metab. 14, 398-403.   DOI
95 Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R.G., Krausz, K.W., Cai, J., Qi, Y., Fang, Z.Z., Takahashi, S., et al. (2015). Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125, 386-402.   DOI
96 Takabe, K. and Spiegel, S. (2014). Export of sphingosine-1-phosphate and cancer progression. J. Lipid Res. 55, 1839-1846.   DOI
97 Taniguchi, C.M., Kondo, T., Sajan, M., Luo, J., Bronson, R., Asano, T., Farese, R., Cantley, L.C., and Kahn, C.R. (2006). Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell Metab. 3, 343-353.   DOI
98 Turner, N., Kowalski, G.M., Leslie, S.J., Risis, S., Yang, C., Lee-Young, R.S., Babb, J.R., Meikle, P.J., Lancaster, G.I., Henstridge, D.C., et al. (2013). Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 56, 1638-1648.   DOI
99 Turpin, S.M., Nicholls, H.T., Willmes, D.M., Mourier, A., Brodesser, S., Wunderlich, C.M., Mauer, J., Xu, E., Hammerschmidt, P., Brönneke, H.S., et al. (2014). Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678-686.   DOI
100 Jiang, M., Li, C., Liu, Q., Wang, A., and Lei, M. (2019). Inhibiting ceramide synthesis attenuates hepatic steatosis and fibrosis in rats with nonalcoholic fatty liver disease. Front. Endocrinol. 10, 665.   DOI
101 Jin, J., Zhang, X., Lu, Z., Perry, D.M., Li, Y., Russo, S.B., Cowart, L.A., Hannun, Y.A., and Huang, Y. (2013). Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages. Am. J. Physiol. Endocrinol. Metab. 305, E853-E867.   DOI
102 Kageyama, Y., Ikeda, H., Watanabe, N., Nagamine, M., Kusumoto, Y., Yashiro, M., Satoh, Y., Shimosawa, T., Shinozaki, K., Tomiya, T., et al. (2012). Antagonism of sphingosine 1-phosphate receptor 2 causes a selective reduction of portal vein pressure in bile duct-ligated rodents. Hepatology 56, 1427-1438.   DOI
103 Kaneko, T., Murakami, T., Kawana, H., Takahashi, M., Yasue, T., and Kobayashi, E. (2006). Sphingosine-1-phosphate receptor agonists suppress concanavalin A-induced hepatic injury in mice. Biochem. Biophys. Res. Commun. 345, 85-92.   DOI
104 Khattar, M., Deng, R., Kahan, B.D., Schroder, P.M., Phan, T., Rutzky, L.P., and Stepkowski, S.M. (2013). Novel sphingosine-1-phosphate receptor modulator KRP203 combined with locally delivered regulatory T cells induces permanent acceptance of pancreatic islet allografts. Transplantation 95, 919-927.   DOI
105 Kim, Y.R., Lee, E.J., Shin, K.O., Kim, M.H., Pewzner-Jung, Y., Lee, Y.M., Park, J.W., Futerman, A.H., and Park, W.J. (2019). Hepatic triglyceride accumulation via endoplasmic reticulum stress-induced SREBP-1 activation is regulated by ceramide synthases. Exp. Mol. Med. 51, 1-16.
106 Barr, E.L., Cameron, A.J., Balkau, B., Zimmet, P.Z., Welborn, T.A., Tonkin, A.M., and Shaw, J.E. (2010). HOMA insulin sensitivity index and the risk of all-cause mortality and cardiovascular disease events in the general population: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) study. Diabetologia 53, 79-88.   DOI
107 Ussher, J.R., Koves, T.R., Cadete, V.J.J., Zhang, L., Jaswal, J.S., Swyrd, S.J., Lopaschuk, D.G., Proctor, S.D., Keung, W., Muoio, D.M., et al. (2010). Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59, 2453-2464.   DOI
108 Verma, M.K., Yateesh, A.N., Neelima, K., Pawar, N., Sandhya, K., Poornima, J., Lakshmi, M.N., Yogeshwari, S., Pallavi, P.M., Oommen, A.M., et al. (2014). Inhibition of neutral sphingomyelinases in skeletal muscle attenuates fatty-acid induced defects in metabolism and stress. SpringerPlus 3, 255-212.   DOI
109 Aerts, J.M., Ottenhoff, R., Powlson, A.S., Grefhorst, A., van Eijk, M., Dubbelhuis, P.F., Aten, J., Kuipers, F., Serlie, M.J., Wennekes, T., et al. (2007). Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56, 1341-1349.   DOI
110 Al Fadel, F., Fayyaz, S., Japtok, L., and Kleuser, B. (2016). Involvement of sphingosine 1-phosphate in palmitate-induced non-alcoholic fatty liver disease. Cell. Physiol. Biochem. 40, 1637-1645.   DOI
111 Kong, Y., Wang, H., Wang, S., and Tang, N. (2014). FTY720, a sphingosine-1 phosphate receptor modulator, improves liver fibrosis in a mouse model by impairing the motility of bone marrow-derived mesenchymal stem cells. Inflammation 37, 1326-1336.   DOI
112 King, A., Houlihan, D.D., Kavanagh, D., Haldar, D., Luu, N., Owen, A., Suresh, S., Than, N.N., Reynolds, G., Penny, J., et al. (2017). Sphingosine-1-phosphate prevents egress of hematopoietic stem cells from liver to reduce fibrosis. Gastroenterology 153, 233-248.e16.   DOI
113 Kisseleva, T., Cong, M., Paik, Y., Scholten, D., Jiang, C., Benner, C., Iwaisako, K., Moore-Morris, T., Scott, B., Tsukamoto, H., et al. (2012). Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl. Acad. Sci. U. S. A. 109, 9448-9453.   DOI
114 Kitatani, K., Taniguchi, M., and Okazaki, T. (2015). Role of sphingolipids and metabolizing enzymes in hematological malignancies. Mol. Cells 38, 482-495.   DOI
115 Kowalski, G.M., Kloehn, J., Burch, M.L., Selathurai, A., Hamley, S., Bayol, S.A.M., Lamon, S., Watt, M.J., Lee-Young, R.S., McConville, M.J., et al. (2015). Overexpression of sphingosine kinase 1 in liver reduces triglyceride content in mice fed a low but not high-fat diet. Biochim. Biophys. Acta 1851, 210-219.   DOI
116 Kurek, K., Piotrowska, D.M., Wiesiolek, P., Lukaszuk, B., Chabowski, A., Gorski, J., and Zendzian-Piotrowska, M. (2013). Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Int. 34, 1074-1083.   DOI
117 Lallemand, T., Rouahi, M., Swiader, A., Grazide, M.H., Geoffre, N., Alayrac, P., Recazens, E., Coste, A., Salvayre, R., Negre-Salvayre, A., et al. (2018). nSMase2 (type 2-neutral sphingomyelinase) deficiency or inhibition by GW4869 reduces inflammation and atherosclerosis in Apoe-/- mice. Arterioscler. Thromb. Vasc. Biol. 38, 1479-1492.   DOI