References
- Kotloff, K. L., J. P. Winickoff, B. Ivanoff, J. D. Clemens, D. L. Swerdlow, P. J. Sansonetti, G. K. Adak, and M. M. Levine. 1999. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 77: 651-666.
- Ogawa, M., Y. Handa, H. Ashida, M. Suzuki, and C. Sasakawa. 2008. The versatility of Shigella effectors. Nat. Rev. Microbiol. 6: 11-16. https://doi.org/10.1038/nrmicro1814
- Kweon, M. N. 2008. Shigellosis: the current status of vaccine development. Curr. Opin. Infect. Dis. 21: 313-318. https://doi.org/10.1097/QCO.0b013e3282f88b92
- Ashida, H., M. Ogawa, H. Mimuro, T. Kobayashi, T. Sanada, and C. Sasakawa. 2011. Shigella are versatile mucosal pathogens that circumvent the host innate immune system. Curr. Opin. Immunol. 23: 448-455. https://doi.org/10.1016/j.coi.2011.06.001
- Shim, D. H., T. Suzuki, S. Y. Chang, S. M. Park, P. J. Sansonetti, C. Sasakawa, and M. N. Kweon. 2007. New animal model of shigellosis in the Guinea pig: its usefulness for protective efficacy studies. J. Immunol. 178: 2476-2482. https://doi.org/10.4049/jimmunol.178.4.2476
- Fernandez, M. I., A. Thuizat, T. Pedron, M. Neutra, A. Phalipon, and P. J. Sansonetti. 2003. A newborn mouse model for the study of intestinal pathogenesis of shigellosis. Cell. Microbiol. 5: 481-491. https://doi.org/10.1046/j.1462-5822.2003.00295.x
- Shim, D. H., S. Ryu, and M. N. Kweon. 2010. Defensins play a crucial role in protecting mice against oral Shigella flexneri infection. Biochem. Biophys. Res. Commun. 401: 554-560. https://doi.org/10.1016/j.bbrc.2010.09.100
- Ashida, H., H. Mimuro, M. Ogawa, T. Kobayashi, T. Sanada, M. Kim, and C. Sasakawa. 2011. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. 195: 931-942. https://doi.org/10.1083/jcb.201108081
- Bergsbaken, T., S. L. Fink, and B. T. Cookson. 2009. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7: 99-109. https://doi.org/10.1038/nrmicro2070
- Sanada, T., M. Kim, H. Mimuro, M. Suzuki, M. Ogawa, A. Oyama, H. Ashida, T. Kobayashi, T. Koyama, S. Nagai, Y. Shibata, J. Gohda, J. Inoue, T. Mizushima, and C. Sasakawa. 2012. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483: 623-626. https://doi.org/10.1038/nature10894
- Ogawa, M., T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima, and C. Sasakawa. 2005. Escape of intracellular Shigella from autophagy. Science 307: 727-731. https://doi.org/10.1126/science.1106036
- Ogawa, M., Y. Yoshikawa, T. Kobayashi, H. Mimuro, M. Fukumatsu, K. Kiga, Z. Piao, H. Ashida, M. Yoshida, S. Kakuta, T. Koyama, Y. Goto, T. Nagatake, S. Nagai, H. Kiyono, M. Kawalec, J. M. Reichhart, and C. Sasakawa. 2011. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host. Microbe. 9: 376-389.
- Chang, S. Y., S. N. Lee, J. Y. Yang, D. W. Kim, J. H. Yoon, H. J. Ko, M. Ogawa, C. Sasakawa, and M. N. Kweon. 2013. Autophagy controls an intrinsic host defense to bacteria by promoting epithelial cell survival: a murine model. PLoS One 8: e81095. https://doi.org/10.1371/journal.pone.0081095
- Yang, J. Y., S. N. Lee, S. Y. Chang, H. J. Ko, S. Ryu, and M. N. Kweon. 2014. A mouse model of shigellosis by intraperitoneal infection. J. Infect. Dis. 209: 203-215. https://doi.org/10.1093/infdis/jit399
- Le Stunff, H., A. Mikami, P. Giussani, J. P. Hobson, P. S. Jolly, S. Milstien, and S. Spiegel. 2004. Role of sphingosine- 1-phosphate phosphatase 1 in epidermal growth factor- induced chemotaxis. J. Biol. Chem. 279: 34290-34297. https://doi.org/10.1074/jbc.M404907200
- Ashida, H., M. Ogawa, M. Kim, H. Mimuro, and C. Sasakawa. 2011. Bacteria and host interactions in the gut epithelial barrier. Nat. Chem. Biol. 8: 36-45. https://doi.org/10.1038/nchembio.741
- Sansonetti, P. J. 2006. Shigellosis: an old disease in new clothes? PLoS Med. 3: e354. https://doi.org/10.1371/journal.pmed.0030354
- Le Stunff, H., S. Milstien, and S. Spiegel. 2004. Generation and metabolism of bioactive sphingosine-1-phosphate. J. Cell. Biochem. 92: 882-899. https://doi.org/10.1002/jcb.20097
- Spiegel, S. and S. Milstien. 2011. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11: 403-415. https://doi.org/10.1038/nri2974
- Chi, H. 2011. Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol. Sci. 32: 16-24. https://doi.org/10.1016/j.tips.2010.11.002
- Alvarez, S. E., K. B. Harikumar, N. C. Hait, J. Allegood, G. M. Strub, E. Y. Kim, M. Maceyka, H. Jiang, C. Luo, T. Kordula, S. Milstien, and S. Spiegel. 2010. Sphingosine-1- phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465: 1084-1088. https://doi.org/10.1038/nature09128
- Teijaro, J. R., K. B. Walsh, S. Cahalan, D. M. Fremgen, E. Roberts, F. Scott, E. Martinborough, R. Peach, M. B. Oldstone, and H. Rosen. 2011. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146: 980-991. https://doi.org/10.1016/j.cell.2011.08.015
- Ashida, H., M. Ogawa, H. Mimuro, and C. Sasakawa. 2009. Shigella infection of intestinal epithelium and circumvention of the host innate defense system. Curr. Top. Microbiol. Immunol. 337: 231-255.
- Tran Van Nhieu, G., R. Bourdet-Sicard, G. Dumenil, A. Blocker, and P. J. Sansonetti. 2000. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell. Microbiol. 2: 187-193. https://doi.org/10.1046/j.1462-5822.2000.00046.x
Cited by
- Sphingolipids as Mediators in the Crosstalk between Microbiota and Intestinal Cells: Implications for Inflammatory Bowel Disease vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/9890141
- Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies vol.37, pp.5, 2014, https://doi.org/10.1080/10799893.2017.1358282
- Target Product Profile and Development Path for Shigellosis Treatment with Antibacterials vol.7, pp.5, 2021, https://doi.org/10.1021/acsinfecdis.0c00889