Browse > Article
http://dx.doi.org/10.4110/in.2014.14.2.100

Shigella flexneri Inhibits Intestinal Inflammation by Modulation of Host Sphingosine-1-Phosphate in Mice  

Kim, Young-In (Laboratory of Microbiology, College of Pharmacy, Ajou University)
Yang, Jin-Young (Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine)
Ko, Hyun-Jeong (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University)
Kweon, Mi-Na (Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine)
Chang, Sun-Young (Laboratory of Microbiology, College of Pharmacy, Ajou University)
Publication Information
IMMUNE NETWORK / v.14, no.2, 2014 , pp. 100-106 More about this Journal
Abstract
Infection with invasive Shigella species results in intestinal inflammation in humans but no symptoms in adult mice. To investigate why adult mice are resistant to invasive shigellae, 6~8-week-old mice were infected orally with S. flexneri 5a. Shigellae successfully colonized the small and large intestines. Mild cell death was seen but no inflammation. The infected bacteria were cleared 24 hours later. Microarray analysis of infected intestinal tissue showed that several genes that are involved with the sphingosine-1-phosphate (S1P) signaling pathway, a lipid mediator which mediates immune responses, were altered significantly. Shigella infection of a human intestinal cell line modulated host S1P-related genes to reduce S1P levels. In addition, co-administration of S1P with shigellae could induce inflammatory responses in the gut. Here we propose that Shigella species have evasion mechanisms that dampen host inflammatory responses by lowering host S1P levels in the gut of adult mice.
Keywords
Shigella flexneri; Inflammation; Sphingosine-1-phosphate; Intestine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ashida, H., M. Ogawa, H. Mimuro, T. Kobayashi, T. Sanada, and C. Sasakawa. 2011. Shigella are versatile mucosal pathogens that circumvent the host innate immune system. Curr. Opin. Immunol. 23: 448-455.   DOI   ScienceOn
2 Shim, D. H., T. Suzuki, S. Y. Chang, S. M. Park, P. J. Sansonetti, C. Sasakawa, and M. N. Kweon. 2007. New animal model of shigellosis in the Guinea pig: its usefulness for protective efficacy studies. J. Immunol. 178: 2476-2482.   DOI
3 Le Stunff, H., A. Mikami, P. Giussani, J. P. Hobson, P. S. Jolly, S. Milstien, and S. Spiegel. 2004. Role of sphingosine- 1-phosphate phosphatase 1 in epidermal growth factor- induced chemotaxis. J. Biol. Chem. 279: 34290-34297.   DOI   ScienceOn
4 Spiegel, S. and S. Milstien. 2011. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11: 403-415.   DOI   ScienceOn
5 Ashida, H., M. Ogawa, M. Kim, H. Mimuro, and C. Sasakawa. 2011. Bacteria and host interactions in the gut epithelial barrier. Nat. Chem. Biol. 8: 36-45.   DOI   ScienceOn
6 Sansonetti, P. J. 2006. Shigellosis: an old disease in new clothes? PLoS Med. 3: e354.   DOI
7 Le Stunff, H., S. Milstien, and S. Spiegel. 2004. Generation and metabolism of bioactive sphingosine-1-phosphate. J. Cell. Biochem. 92: 882-899.   DOI   ScienceOn
8 Chi, H. 2011. Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol. Sci. 32: 16-24.   DOI   ScienceOn
9 Alvarez, S. E., K. B. Harikumar, N. C. Hait, J. Allegood, G. M. Strub, E. Y. Kim, M. Maceyka, H. Jiang, C. Luo, T. Kordula, S. Milstien, and S. Spiegel. 2010. Sphingosine-1- phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465: 1084-1088.   DOI   ScienceOn
10 Teijaro, J. R., K. B. Walsh, S. Cahalan, D. M. Fremgen, E. Roberts, F. Scott, E. Martinborough, R. Peach, M. B. Oldstone, and H. Rosen. 2011. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146: 980-991.   DOI   ScienceOn
11 Ashida, H., M. Ogawa, H. Mimuro, and C. Sasakawa. 2009. Shigella infection of intestinal epithelium and circumvention of the host innate defense system. Curr. Top. Microbiol. Immunol. 337: 231-255.
12 Tran Van Nhieu, G., R. Bourdet-Sicard, G. Dumenil, A. Blocker, and P. J. Sansonetti. 2000. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell. Microbiol. 2: 187-193.   DOI   ScienceOn
13 Shim, D. H., S. Ryu, and M. N. Kweon. 2010. Defensins play a crucial role in protecting mice against oral Shigella flexneri infection. Biochem. Biophys. Res. Commun. 401: 554-560.   DOI   ScienceOn
14 Ogawa, M., T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima, and C. Sasakawa. 2005. Escape of intracellular Shigella from autophagy. Science 307: 727-731.   DOI   ScienceOn
15 Ashida, H., H. Mimuro, M. Ogawa, T. Kobayashi, T. Sanada, M. Kim, and C. Sasakawa. 2011. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. 195: 931-942.   DOI
16 Bergsbaken, T., S. L. Fink, and B. T. Cookson. 2009. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7: 99-109.   DOI   ScienceOn
17 Sanada, T., M. Kim, H. Mimuro, M. Suzuki, M. Ogawa, A. Oyama, H. Ashida, T. Kobayashi, T. Koyama, S. Nagai, Y. Shibata, J. Gohda, J. Inoue, T. Mizushima, and C. Sasakawa. 2012. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483: 623-626.   DOI   ScienceOn
18 Ogawa, M., Y. Yoshikawa, T. Kobayashi, H. Mimuro, M. Fukumatsu, K. Kiga, Z. Piao, H. Ashida, M. Yoshida, S. Kakuta, T. Koyama, Y. Goto, T. Nagatake, S. Nagai, H. Kiyono, M. Kawalec, J. M. Reichhart, and C. Sasakawa. 2011. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host. Microbe. 9: 376-389.
19 Chang, S. Y., S. N. Lee, J. Y. Yang, D. W. Kim, J. H. Yoon, H. J. Ko, M. Ogawa, C. Sasakawa, and M. N. Kweon. 2013. Autophagy controls an intrinsic host defense to bacteria by promoting epithelial cell survival: a murine model. PLoS One 8: e81095.   DOI   ScienceOn
20 Yang, J. Y., S. N. Lee, S. Y. Chang, H. J. Ko, S. Ryu, and M. N. Kweon. 2014. A mouse model of shigellosis by intraperitoneal infection. J. Infect. Dis. 209: 203-215.   DOI   ScienceOn
21 Kotloff, K. L., J. P. Winickoff, B. Ivanoff, J. D. Clemens, D. L. Swerdlow, P. J. Sansonetti, G. K. Adak, and M. M. Levine. 1999. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 77: 651-666.
22 Ogawa, M., Y. Handa, H. Ashida, M. Suzuki, and C. Sasakawa. 2008. The versatility of Shigella effectors. Nat. Rev. Microbiol. 6: 11-16.   DOI   ScienceOn
23 Kweon, M. N. 2008. Shigellosis: the current status of vaccine development. Curr. Opin. Infect. Dis. 21: 313-318.   DOI   ScienceOn
24 Fernandez, M. I., A. Thuizat, T. Pedron, M. Neutra, A. Phalipon, and P. J. Sansonetti. 2003. A newborn mouse model for the study of intestinal pathogenesis of shigellosis. Cell. Microbiol. 5: 481-491.   DOI   ScienceOn