• 제목/요약/키워드: spectral

검색결과 8,239건 처리시간 0.029초

Study of Wave Load Nonlinearity Effect On Fatigue Life in Component Stochastic Fatigue Analysis

  • Han Sungkon;Park Kyung-Won;Shin Hyun-Il;Heo Joo-Ho
    • Journal of Ship and Ocean Technology
    • /
    • 제9권4호
    • /
    • pp.11-22
    • /
    • 2005
  • This paper addresses details of wave load nonlinearity effect on stress RAO and damage ratio using component stochastic fatigue analysis. Traditional spectral fatigue analysis for ship structure is based on linear theory; however, there are a number of nonlinearity sources. Especially loading nonlinearity, such as hydrodynamic pressure applying to ship side and gravity changes due to roll and pitch motion, is thought to critically violate the linearity assumption of spectral fatigue analysis, which involves stress RAO as linear parameter. The main focus is placed on how to idealize complicated characteristics of loading nonlinearity and how to implement the nonlinear bias to linear spectral fatigue analysis.

Prompt Fission Neutron Spectra in Supercritical Accidents (Influence on the Fission Spectrum-averaged cross-sections of Some Threshold Activation Reactions)

  • Ro, Seung-Gy;Jun, Jae-Shik
    • Nuclear Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.119-126
    • /
    • 1975
  • On the assumption that the spectral distribution of prompt fission neutrons released from supercritical accidents can be expressed by the generalized Cranberg form with two spectral parameters, which is then transformed into the single parameter form, a variation of the fission spectrum-averaged cross-sections for some threshold reactions with varying the spectral parameter has teen calculated using an electronic computer. It appears that the average cross-sections are very sensitive to the spectral deformation, especially those for the detectors having the threshold at high neutron energy are high compared to those for the detectors of which the threshold energies are comparatively low.

  • PDF

Wavelet Power Spectrum Estimation for High-resolution Terahertz Time-domain Spectroscopy

  • Kim, Young-Chan;Jin, Kyung-Hwan;Ye, Jong-Chul;Ahn, Jae-Wook;Yee, Dae-Su
    • Journal of the Optical Society of Korea
    • /
    • 제15권1호
    • /
    • pp.103-108
    • /
    • 2011
  • Recently reported asynchronous-optical-sampling terahertz (THz) time-domain spectroscopy enables high-resolution spectroscopy due to a long time-delay window. However, a long-lasting tail signal following the main pulse is often measured in a time-domain waveform, resulting in spectral fluctuation above a background noise level on a high-resolution THz amplitude spectrum. Here, we adopt the wavelet power spectrum estimation technique (WPSET) to effectively remove the spectral fluctuation without sacrificing spectral features. Effectiveness of the WPSET is verified by investigating a transmission spectrum of water vapor.

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN;AHN, HYUNG TAEK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.173-195
    • /
    • 2021
  • A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

A NONLINEAR CONVEX SPLITTING FOURIER SPECTRAL SCHEME FOR THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE ENERGY

  • Kim, Junseok;Lee, Hyun Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • 제56권1호
    • /
    • pp.265-276
    • /
    • 2019
  • For a simple implementation, a linear convex splitting scheme was coupled with the Fourier spectral method for the Cahn-Hilliard equation with a logarithmic free energy. However, an inappropriate value of the splitting parameter of the linear scheme may lead to incorrect morphologies in the phase separation process. In order to overcome this problem, we present a nonlinear convex splitting Fourier spectral scheme for the Cahn-Hilliard equation with a logarithmic free energy, which is an appropriate extension of Eyre's idea of convex-concave decomposition of the energy functional. Using the nonlinear scheme, we derive a useful formula for the relation between the gradient energy coefficient and the thickness of the interfacial layer. And we present numerical simulations showing the different evolution of the solution using the linear and nonlinear schemes. The numerical results demonstrate that the nonlinear scheme is more accurate than the linear one.

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • 제21권3호
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

On the use of spectral algorithms for the prediction of short-lived volatile fission product release: Methodology for bounding numerical error

  • Zullo, G.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1195-1205
    • /
    • 2022
  • Recent developments on spectral diffusion algorithms, i.e., algorithms which exploit the projection of the solution on the eigenfunctions of the Laplacian operator, demonstrated their effective applicability in fast transient conditions. Nevertheless, the numerical error introduced by these algorithms, together with the uncertainties associated with model parameters, may impact the reliability of the predictions on short-lived volatile fission product release from nuclear fuel. In this work, we provide an upper bound on the numerical error introduced by the presented spectral diffusion algorithm, in both constant and time-varying conditions, depending on the number of modes and on the time discretization. The definition of this upper bound allows introducing a methodology to a priori bound the numerical error on short-lived volatile fission product retention.

Development of two dimensional full wave spectral code for the ICRF heating and current drive research including scrape-off layer in tokamaks

  • Kim, S.H.;Kwak, J.G.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3724-3731
    • /
    • 2022
  • It is important for an ICRF full wave code to simulate the SOL (Scrape Off Layer) plasma as well as the core inside of the LCFS (Last Closed Flux Surface) for the precise prediction of the coupling between the antenna and the core plasma in tokamaks. To this end, a two dimensional full wave code based on a Fourier spectral algorithm has been developed. The spectral algorithm and procedures are described and the simulation results for the minority heating in KSTAR are reported including electric field, power absorption and power flux.

FORBIDDEN THETA GRAPH, BOUNDED SPECTRAL RADIUS AND SIZE OF NON-BIPARTITE GRAPHS

  • Shuchao Li;Wanting Sun;Wei Wei
    • Journal of the Korean Mathematical Society
    • /
    • 제60권5호
    • /
    • pp.959-986
    • /
    • 2023
  • Zhai and Lin recently proved that if G is an n-vertex connected 𝜃(1, 2, r + 1)-free graph, then for odd r and n ⩾ 10r, or for even r and n ⩾ 7r, one has ${\rho}(G){\leq}{\sqrt{{\lfloor}{\frac{n^2}{4}}{\rfloor}}}$, and equality holds if and only if G is $K_{{\lceil}{\frac{n}{2}}{\rceil},{\lfloor}{\frac{n}{2}}{\rfloor}}$. In this paper, for large enough n, we prove a sharp upper bound for the spectral radius in an n-vertex H-free non-bipartite graph, where H is 𝜃(1, 2, 3) or 𝜃(1, 2, 4), and we characterize all the extremal graphs. Furthermore, for n ⩾ 137, we determine the maximum number of edges in an n-vertex 𝜃(1, 2, 4)-free non-bipartite graph and characterize the unique extremal graph.

Group-indexed orthogonal frequency division multiplexing index modulation aided performance trade off

  • Anushya, Thomas Wilfred Edison Athisaya;Laxmikandan, Thangavelu;Manimekalai, Thirunavukkarasu
    • ETRI Journal
    • /
    • 제44권1호
    • /
    • pp.105-116
    • /
    • 2022
  • In this study, a novel group-indexed orthogonal frequency division multiplexing index modulation (OFDM-IM) scheme is proposed to achieve a tradeoff between spectral efficiency (SE) and bit-error-rate (BER) performance. In the proposed scheme, the total subcarriers in a group are divided into subgroups, and additional bits are transmitted by subgroup indexing, unlike the conventional OFDM-IM scheme, which uses index bits to select active subcarriers. With the proposed scheme, the additional degree of freedom provided by the number of active subgroups selected provides a tradeoff between spectral efficiency and BER performance. Decoding is performed in steps to reduce computional complexity in the decoder design. Simulaton results show that the number of active subgroups selected influences the proposed scheme's performance in terms of energy efficiency, spectral efficiency, and BER performance.