Browse > Article
http://dx.doi.org/10.9714/psac.2019.21.3.006

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system  

Hwang, Jungseek (Department of Physics, Sungkyunkwan University)
Publication Information
Progress in Superconductivity and Cryogenics / v.21, no.3, 2019 , pp. 6-12 More about this Journal
Abstract
Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.
Keywords
extended Drude model; optical self-energy; electron-boson spectral density function; low-energy interband transition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Benfatto, E. Cappelluti, L. Ortenzi, and L. Boeri, "Extended Drude model and role of interband transitions in the midinfrared spectra of pnictides," Phys. Rev. B, vol. 83, pp. 224514, 2011.   DOI
2 Jungseek Hwang, "Analysis of optical data using extended Drude model and generalized Allen's formulas," J. Phys.: Condens. Matter, vol. 30, pp. 405604, 2018.   DOI
3 E. Schachinger, D. Neuber, and J. P. Carbotte, "Inversion techniques for optical conductivity data," Phys. Rev. B, vol. 73, pp. 184507, 2006.   DOI
4 Frederick Wooten, Optical Properties of Solids. Academic, New York, 1972. (Note: Key material on page 176).
5 J. P. Carbotte, T. Timusk, and J. Hwang, "Bosons in hightemperature superconductors: an experimental survey," Reports on Progress in Physics, vol. 74, pp. 066501, 2011.   DOI
6 A. J. Millis, H. Monien, and D. Pines, "Phenomenological model of nuclear relaxation in the normal state of $YBa_2Cu_3O_7$," Phys. Rev. B, vol. 42, pp. 167, 1990.   DOI
7 Pengcheng Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Doguan, "The magnetic excitation spectrum and thermodynamics of high-Tc superconductors," Science, vol. 284, pp. 1344, 1999.   DOI
8 H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, J. Bossy, A. Ivanov, D. L. Milius, I. A. Aksay, and B. Keimer, "Spin susceptibility in underdoped $YBa_2Cu_3O_{6+x}$," Phys. Rev. B, vol. 61, pp. 14773, 2000.   DOI
9 P. D. Johnson, T. Valla, A. V. Fedorov, Z. Yusof, B. O. Wells, Q. Li, A. R. Moodenbaugh, G. D. Gu, N. Koshizuka, C. Kendziora, Sha Jian, and D. G. Hinks, Phys. Rev. Lett., vol. 87, pp. 177007, 2001.   DOI
10 T. Valla, T. E. Kidd, W.-G. Yin, G. D. Gu, P. D. Johnson, Z.-H. Pan, and A. V. Fedorov, Phys. Rev. Lett., vol. 98, pp. 167003, 2007.   DOI
11 Wentao Zhang, Guodong Liu, Lin Zhao, Haiyun Liu, Jianqiao Meng, Xiaoli Dong, Wei Lu, J. S. Wen, Z. J. Xu, G. D. Gu, T. Sasagawa, Guiling Wang, Yong Zhu, Hongbo Zhang, Yong Zhou, Xiaoyang Wang, Zhongxian Zhao, Chuangtian Chen, Zuyan Xu, and X. J. Zhou, Phys. Rev. Lett., vol. 100, pp. 107002, 2008.   DOI
12 J. Hwang, J. Yang, J. P. Carbotte, and T. Timusk, "Manifestation of the pseudogap in ab-plane optical characteristics," J. Phys. Condens. Matter, vol. 20, pp. 295215, 2008.
13 S. V. Dordevic, D. van der Marel, and C. C. Homes, "Fate of quasiparticles in the superconducting state," Phys. Rev. B, vol. 90, pp. 174508, 2014.   DOI
14 Jungseek Hwang, "Intrinsic temperature-dependent evolutions in the electron-boson spectral density obtained from optical data," Scientific Reports, vol. 6, pp. 23647, 2016.   DOI
15 E. Schachinger and J. P. Carbotte, "Optical properties of bogoliubov quasiparticles," Phys. Rev. B, vol. 95, pp. 144516, 2017.   DOI
16 Jungseek Hwang, arXiv cond-mat, page 1907.13326, 2019.
17 J. Hwang, "Simulation of a hump structure in the optical scattering rate within a generalized Allen formalism and its application to copper oxide systems," J. Phys. Condens. Matter, vol. 25, pp. 295701, 2013.   DOI
18 Jungseek Hwang, "Electron-boson spectral density function of correlated multiband systems obtained from optical data: $Ba_{0.6}K_{0.4}Fe_2As_2$ and LiFeAs," J. Phys.: Condens. Matter, vol. 28, pp. 125702, 2016.   DOI
19 F. Marsiglio, T. Startseva, and J. P. Carbotte, "Inversion of K3C60 reflectance data," Phys. Lett. A, vol. 245, pp. 172, 1998.   DOI
20 Hazime Mori, "A continued-fraction representation of the timecorrelation functions," Prog. Theor. Phys., vol. 34, pp. 399, 1965.   DOI
21 B. C. Webb, A. J. Sievers, and T. Mihalisin, "Observation of an energy- and temperature-dependent carrier mass for mixed-valence CePd3," Phys. Rev. Lett., vol. 57, pp. 1951, 1986.   DOI
22 J. P. Carbotte, E. Schachinger, and D. N. Basov, "Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors," Nature (London), vol. 401, pp. 354, 1999.   DOI
23 Ar. Abanov, A. V. Chubukov, and J. Schmalian, "Singularities in the optical response of cuprates," Phys. Rev. B, vol. 63, pp. 180510(R), 2001.   DOI
24 W. Gotze and P. Wolfle, "Homogeneous dynamical conductivity of simple metals," Phys. Rev. B, vol. 6, pp. 1226, 1972.   DOI
25 A. V. Puchkov, D. N. Basov, and T. Timusk, "The pseudogap state in high-Tc superconductors: an infrared study," J. Phys.: Cond. Matter, vol. 8, pp. 10049, 1996.   DOI
26 J. Hwang, T. Timusk, and G. D. Gu, "High-transition-temperature superconductivity in the absence of the magnetic-resonance mode," Nature (London), vol. 427, pp. 714, 2004.   DOI
27 J. P. Carbotte, E. Schachinger, and J. Hwang, "Boson structures in the relation between optical conductivity and quasiparticle dynamics," Phys. Rev. B, vol. 71, pp. 054506, 2005.   DOI
28 J. Hwang, E. J. Nicol, T. Timusk, A. Knigavko, and J. P. Carbotte, "High energy scales in the optical self-energy of the cuprate superconductors," Phys. Rev. Lett., vol. 98, pp. 207002, 2007.   DOI
29 P. E. Sulewski, A. J. Sievers, M. B. Maple, M. S. Torikachvili, J. L. Smith, and Z. Fisk, "Far-infrared absorptivity of UPt3," Phys. Rev. B, vol. 38, pp. 5338, 1988.   DOI
30 G. A. Thomas, J. Orenstein, D. H. Rapkine, M. Capizzi, A. J. Millis, R. N. Bhatt, L. F. Schneemeyer, and J. V. Waszczak, "Y $Ba_2Cu_3O_7$- ${\delta}$ electrodynamics of crystals with high reflectivity," Phys. Rev. Lett., vol. 61, pp. 1313, 1988.   DOI
31 A. M. Awasthi, L. Degiorgi, G. Gruner, Y. Dalichaouch, and M. B. Maple, "Complete optical spectrum of $CeAl_3$," Phys. Rev. B, vol. 48, pp. 10692, 1993.   DOI
32 W. L. McMillan and J. M. Rowell, "Lead phonon spectrum calculated from superconducting density of states," Phys. Rev. Lett., vol. 14, pp. 108, 1965.   DOI
33 S. V. Dordevic, D. N. Basov, N. R. Dilley, E. D. Bauer, and M. B. Maple, "Hybridization gap in heavy fermion compounds," Phys. Rev. Lett., vol. 86, pp. 684, 2001.   DOI
34 P. Tran, S. Donovan, and G. Gruner, "Charge excitation spectrum in $UPt_3$," Phys. Rev. B, vol. 65, pp. 205102, 2002.   DOI
35 B. Mitrovic and M. A. Fiorucci, "Effects of energy dependence in the electronic density of states on the far-infrared absorption in superconductors," Phys. Rev. B, vol. 31, pp. 2694, 1985.   DOI
36 S. V. Shulga, O. V. Dolgov, and E. G. Maksimov, "Electronic states and optical spectra of HTSC with electron-phonon coupling," Physica C, vol. 178, pp. 266, 1991.   DOI
37 S. G. Sharapov and J. P. Carbotte, "Effects of energy dependence in the quasiparticle density of states on far-infrared absorption in the pseudogap state," Phys. Rev. B, vol. 72, pp. 134506, 2005.   DOI
38 J. Hwang, E. Schachinger, J. P. Carbotte, F. Gao, D. B. Tanner, and T. Timusk, "Bosonic spectral density of epitaxial thin-film $La_{1.83}Sr_{0.17}CuO_4$ superconductors from infrared conductivity measurements," Phys. Rev. Lett., vol. 100, pp. 137005, 2008.   DOI
39 J. Hwang, "Electron-boson spectral density function of underdoped $Bi_2Sr_2CaCu_2O_{8+{\delta}}$ and $YBa_2Cu_3O_{6.50}$," Phys. Rev. B, vol. 83, pp. 014507, 2011.   DOI
40 R. T. Collins, Z. Schlesinger, F. Holtzberg, P. Chaudhari, and C. Field, "Reflectivity and conductivity of $YBa_2Cu_3O_7$," Phys. Rev. B, vol. 39, pp. 6571, 1989.   DOI
41 J. Hwang, J. Yang, T. Timusk, S. G. Sharapov, J. P. Carbotte, D. A. Bonn, R. Liang, and W. N. Hardy, "a-axis optical conductivity of detwinned ortho-II $YBa_2Cu_3O_{6.50}$," Phys. Rev. B, vol. 73, pp. 014508, 2006.   DOI
42 J. P. Carbotte, "Properties of boson-exchange superconductors," Rev. Mod. Phys., vol. 62, pp. 1027, 1990.   DOI
43 P. B. Allen, "Electron-phonon effects in the infrared properties of metals," Phys. Rev. B, vol. 3, pp. 305, 1971.   DOI
44 E. Schachinger and J. P. Carbotte, "Coupling to spin fluctuations from conductivity scattering rates," Phys. Rev. B, vol. 62, pp. 9054, 2000.   DOI
45 J. Hwang, T. Timusk, E. Schachinger, and J. P. Carbotte, "Evolution of the bosonic spectral density of the high-temperature superconductor $Bi_2Sr_2CaCu_2O_{8+{\delta}}$," Phys. Rev. B, vol. 75, pp. 144508, 2007.   DOI
46 Jungseek Hwang, "Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors," J. Phys.: Condens. Matter, vol. 27, pp. 085701, 2015.   DOI