Browse > Article
http://dx.doi.org/10.1016/j.net.2021.10.028

On the use of spectral algorithms for the prediction of short-lived volatile fission product release: Methodology for bounding numerical error  

Zullo, G. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Publication Information
Nuclear Engineering and Technology / v.54, no.4, 2022 , pp. 1195-1205 More about this Journal
Abstract
Recent developments on spectral diffusion algorithms, i.e., algorithms which exploit the projection of the solution on the eigenfunctions of the Laplacian operator, demonstrated their effective applicability in fast transient conditions. Nevertheless, the numerical error introduced by these algorithms, together with the uncertainties associated with model parameters, may impact the reliability of the predictions on short-lived volatile fission product release from nuclear fuel. In this work, we provide an upper bound on the numerical error introduced by the presented spectral diffusion algorithm, in both constant and time-varying conditions, depending on the number of modes and on the time discretization. The definition of this upper bound allows introducing a methodology to a priori bound the numerical error on short-lived volatile fission product retention.
Keywords
Fission product release; Spectral diffusion algorithms; Diffusion-decay equation; Error analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Ducros, Y. Pontillon, P.P. Malgouyres, Synthesis of the VERCORS experimental programme: separate-effect experiments on Fission Product release, in support of the PHEBUS-FP programme, Ann. Nucl. Energy 61 (2013) 75-87, https://doi.org/10.1016/j.anucene.2013.02.033.   DOI
2 J.A. Turnbull, C.A. Friskney, J.R. Findlay, F.A. Johnson, A.J. Walter, The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide, J. Nucl. Mater. 107 (2-3) (1982) 168-184, https://doi.org/10.1016/0022-3115(82)90419-6.   DOI
3 F. D'Auria, C. Camargo, O. Mazzantini, The Best Estimate Plus Uncertainty (BEPU) approach in licensing of current nuclear reactors, Nucl. Eng. Des. 248 (Jul. 2012) 317-328, https://doi.org/10.1016/j.nucengdes.2012.04.002.   DOI
4 R. Hamlet, "Random Testing," in Encyclopedia of Software Engineering, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2002, https://doi.org/10.1002/0471028959.sof268.   DOI
5 M.S. Veshchunov, V.D. Ozrin, V.E. Shestak, V.I. Tarasov, R. Dubourg, G. Nicaise, Development of the mechanistic code MFPR for modelling fission-product release from irradiated UO2 fuel, Nucl. Eng. Des. 236 (2) (2006) 179-200, https://doi.org/10.1016/j.nucengdes.2005.08.006.   DOI
6 J.A. Turnbull, C.E. Beyer, Background and Derivation of ANS-5.4 Standard Fission Product Release Model, United States Nuclear Regulatory Commision, 2010, p. 11.
7 K. Lassmann, TRANSURANUS: A Fuel Rod Analysis Code Ready for Use, in: Nuclear Materials for Fission Reactors, 1992, pp. 295-302, https://doi.org/10.1016/b978-0-444-89571-4.50046-3.   DOI
8 G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P. van Uffelen, L. Luzzi, An effective numerical algorithm for intra-granular fission gas release during non-equilibrium trapping and resolution, J. Nucl. Mater. 509 (2018) 687-699, https://doi.org/10.1016/j.jnucmat.2018.07.030.   DOI
9 K. Forsberg, A.R. Massih, Diffusion theory of fission gas migration in irradiated nuclear fuel UO2, J. Nucl. Mater. 135 (2-3) (1985), https://doi.org/10.1016/0022-3115(85)90071-6.   DOI
10 A.H. Booth, A Method of Calculating Fission Gas Diffusion from UO2 Fuel and its Application to the X-2-F Loop Test, Atomic Energy of Canada Limited, 1957.
11 P. Tramontana, D. Amalfitano, N. Amatucci, A. Memon, A.R. Fasolino, Developing and evaluating objective termination criteria for random testing, ACM Trans. Software Eng. Methodol. 28 (3) (Jun. 2019), https://doi.org/10.1145/3339836.   DOI
12 J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, C.T. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345, https://doi.org/10.1016/j.jnucmat.2018.08.019.   DOI
13 D. Pizzocri, C. Rabiti, L. Luzzi, T. Barani, P. Van Uffelen, G. Pastore, PolyPole-1: an accurate numerical algorithm for intra-granular fission gas release, J. Nucl. Mater. 478 (2016) 333-342, https://doi.org/10.1016/j.jnucmat.2016.06.028.   DOI
14 P. Hermansson, A.R. Massih, An effective method for calculation of diffusive flow in spherical grains, J. Nucl. Mater. 304 (2-3) (2002) 204-211, https://doi.org/10.1016/S0022-3115(02)00873-5.   DOI
15 K. Forsberg, A.R. Massih, Fission gas release under time-varying conditions, J. Nucl. Mater. 127 (2-3) (1985), https://doi.org/10.1016/0022-3115(85)90348-4.   DOI
16 R.J. White, M.O. Tucker, A new fission-gas release model, J. Nucl. Mater. 118 (1) (1983) 1-38, https://doi.org/10.1016/0022-3115(83)90176-9.   DOI
17 P. Van Uffelen, R.J.M. Konings, C. Vitanza, J. Tulenko, Analysis of Reactor Fuel Rod Behavior, in: D.G. Cacuci (Ed.), Handbook of Nuclear Engineering, first ed., Springer, US, 2010.
18 K. Lassmann, H. Benk, Numerical algorithms for intragranular fission gas release, J. Nucl. Mater. 280 (2) (2000) 127-135, https://doi.org/10.1016/S0022-3115(00)00044-1.   DOI
19 L.G. Williams, Overview of international nuclear safety regulation and licensing, in: Reference Module in Earth Systems and Environmental Sciences,, Elsevier, 2020, https://doi.org/10.1016/b978-0-12-409548-9.12380-2.   DOI
20 R.L. Williamson, et al., Validating the BISON fuel performance code to integral LWR experiments, Nucl. Eng. Des. 301 (May 2016) 232-244, https://doi.org/10.1016/j.nucengdes.2016.02.020.   DOI
21 V. Georgenthum, et al., SCANAIR-BISON Benchmark on CIP0-1 RIA Test, 2017.
22 S. Sengupta, T.K. Sengupta, J.K. Puttam, K.S. Vajjala, Global spectral analysis for convection-diffusion-reaction equation in one and two-dimensions: effects of numerical anti-diffusion and dispersion, J. Comput. Phys. 408 (2020) 109310, https://doi.org/10.1016/j.jcp.2020.109310.   DOI
23 C. Baker, The fission gas bubbles distribution in uranium dioxide from high temperature irradiated SGHWR fuel pins, J. Nucl. Mater. 66 (1977) 283-291.   DOI
24 G. Ducros, P.P. Malgouyres, M. Kissane, D. Boulaud, M. Durin, Fission product release under severe accidental conditions: general presentation of the program and synthesis of VERCORS 1-6 results, Nucl. Eng. Des. 208 (2) (2001) 191-203, https://doi.org/10.1016/S0029-5493(01)00376-4.   DOI
25 Y. Pontillon, G. Ducros, Behaviour of fission products under severe PWR accident conditions: the VERCORS experimental programme - Part 2: release and transport of fission gases and volatile fission products, Nucl. Eng. Des. 240 (7) (2010) 1853-1866, https://doi.org/10.1016/j.nucengdes.2009.06.024.   DOI
26 NEA/CSNI/R(2010)1, Nuclear Fuel Behaviour under Reactivity-Initiated Accident (RIA) Conditions, 2010.
27 M. Ishikawa, S. Shiozawa, A study of fuel behavior under reactivity initiated accident conditions d review, J. Nucl. Mater. 95 (1-2) (1980) 1-30.   DOI
28 D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020) 152042, https://doi.org/10.1016/j.jnucmat.2020.152042.   DOI
29 W.N. Rausch, F.E. Panisko, ANS54: a Computer Subroutine for Predicting Fission Gas Release, Pacific Northwest Laboratory, USA, 1979.
30 J.B. Ainscough, B.W. Oldfield, J.O. Ware, Isothermal grain growth kinetics in sintered UO2 pellets, J. Nucl. Mater. 49 (2) (1973) 117-128, https://doi.org/10.1016/0022-3115(73)90001-9.   DOI
31 T.K. Sengupta, A. Dipankar, P. Sagaut, Error dynamics: beyond von Neumann analysis, J. Comput. Phys. 226 (2) (2007) 1211-1218, https://doi.org/10.1016/j.jcp.2007.06.001.   DOI
32 D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical lnformation Center Energy Research and Development Administration, 1976.
33 V.K. Suman, T.K. Sengupta, C. Jyothi Durga Prasad, K. Surya Mohan, D. Sanwalia, Spectral analysis of finite difference schemes for convection diffusion equation, Comput. Fluid 150 (2017) 95-114, https://doi.org/10.1016/j.compfluid.2017.04.009.   DOI