DOI QR코드

DOI QR Code

Group-indexed orthogonal frequency division multiplexing index modulation aided performance trade off

  • Received : 2021.02.26
  • Accepted : 2021.09.13
  • Published : 2022.02.01

Abstract

In this study, a novel group-indexed orthogonal frequency division multiplexing index modulation (OFDM-IM) scheme is proposed to achieve a tradeoff between spectral efficiency (SE) and bit-error-rate (BER) performance. In the proposed scheme, the total subcarriers in a group are divided into subgroups, and additional bits are transmitted by subgroup indexing, unlike the conventional OFDM-IM scheme, which uses index bits to select active subcarriers. With the proposed scheme, the additional degree of freedom provided by the number of active subgroups selected provides a tradeoff between spectral efficiency and BER performance. Decoding is performed in steps to reduce computional complexity in the decoder design. Simulaton results show that the number of active subgroups selected influences the proposed scheme's performance in terms of energy efficiency, spectral efficiency, and BER performance.

Keywords

Acknowledgement

This work is supported by Anna Centenary Research Fellowship, Anna University.

References

  1. T. E. Basar et al., Orthogonal frequency division multiplexing with index modulation, IEEE Trans. Sign. Process. 61 (2013), no. 22, 5536-5549, doi: 10.1109/TSP.2013.2279771.
  2. R. Fan, Y. J. Yu, and Y. L. Guan, Generalization of orthogonal frequency division multiplexing with index modulation, IEEE Trans. Wirel. Commun. 14 (2015), no. 10, 5350-5359, doi: 10.1109/TWC.2015.2436925.
  3. Q. Ma et al., Subcarrier Allocation for OFDM With Index Modulation, IEEE Commun. Lett. 20 (2016), no. 7, 1469-1472, doi: 10.1109/LCOMM.2016.2560171.
  4. M. Wen et al., On the achievable rate of OFDM with index modulation, IEEE Trans. Sign. Process. 64 (2016), no. 8, 1919-1932, doi: 10.1109/TSP.2015.2500880.
  5. T. Mao et al., Zero-padded orthogonal frequency division multiplexing with index modulation using multiple constellation alphabets, IEEE Access 5 (2017), 21168-21178, doi: 10.1109/ACCESS.2017.2756659.
  6. S. A. Nambi and K. Giridhar, Lower order modulation aided BER reduction in OFDM with index modulation, IEEE Commun. Lett. 22 (2018), no. 8, 1596-1599, doi: 10.1109/LCOMM.2018.2844355.
  7. T. Mao et al., Novel index modulation techniques: A survey, IEEE Commun. Surv. Tutor. 21 (2019), no. 1, 315-348, doi: 10.1109/COMST.2018.2858567.
  8. T. Mao et al., Dual-mode index modulation aided OFDM, IEEE Access 5 (2017), 50-60, doi: 10.1109/ACCESS.2016.2601648.
  9. T. Mao, Q. Wang, and Z. Wang, Generalized dual-mode index modulation aided OFDM, IEEE Commun. Lett. 21 (2017), no. 4, 761-764, doi: 10.1109/LCOMM.2016.2635634.
  10. X. Zhang et al., Dual-mode index modulation aided OFDM with constellation power allocation and low-complexity detector design, IEEE Access 5 (2017), 23871-23880, doi: 10.1109/ACCESS.2017.2756679.
  11. M. Wen et al., Multiple-mode orthogonal frequency division multiplexing with index modulation, IEEE Trans. Commun. 65 (2017), no. 9, 3892-3906, doi: 10.1109/TCOMM.2017.2710312.
  12. C. An and H. Ryu, Dual-mode OFDM with coded direct index modulation for the spectrum efficiency improvement, in Proc. Int. Conf. Comput. Netw. Commun. (CoCoNet), (Astana, Kazakhstan), Aug. 2018, pp. 1-5, doi: 10.1109/CoCoNet.2018.8476906.
  13. S. AldirmazColak, Y. Acar, and E. Basar, Adaptive dual-mode OFDM with index modulation, Phys. Commun. 30 (2018), 15-25, doi: 10.1016/j.phycom.2018.07.010.
  14. J. Li et al., Layered orthogonal frequency division multiplexing with index modulation, IEEE Syst. J. 13 (2019), no. 4, 3793-3802, doi: 10.1109/JSYST.2019.2918068.
  15. M. Wen et al., Enhanced orthogonal frequency division multiplexing with index modulation, IEEE Trans. Wirel. Commun. 16 (2017), no. 7, 4786-4801, doi: 10.1109/TWC.2017.2702618.
  16. M. Wen et al. A generalization of multiple-mode OFDM with index modulation, in Proc. IEEE Int. Conf. Digit. Signal Process. (DSP), (Shanghai, China), Nov. 2018, pp. 1-5, doi: 10.1109/ICDSP.2018.8631554.
  17. E. Ozturk, E. Basar, and H. A. Cirpan, Multiple-input multiple-output generalized frequency division multiplexing with index modulation, Phys. Commun. 34 (2019), 27-37, doi: 10.1016/j.phycom.2019.02.004.
  18. Z. Hu et al., Low-complexity detection for multiple-mode OFDM with index modulation, Phys. Commun. 34 (2019), 38-47, doi: 10.1016/j.phycom.2019.02.005.
  19. Y. Shi et al., Orthogonal frequency division multiplexing with joint subblocks index modulation, IEEE Access 7 (2019), 23930-23939, doi: 10.1109/ACCESS.2019.2899007.
  20. S. AbhijithNambi and K. Giridhar, Index and constellation order lowering for OFDM with index modulation, IEEE Commun. Lett. 24 (2020), no. 5, 1129-1132, doi: 10.1109/LCOMM.2020.2974463.
  21. T. AthisayaAnushya, T. Laxmikandan, and T. Manimekalai, Dual mode dual index orthogonal frequency division multiplexing index modulation, in Proc. Int. Conf. Emerg. Trends Inf. Technol. Eng. (ic-ETITE), (Vellore, India), Feb. 2020, pp. 1-5, doi: 10.1109/ic-ETITE47903.2020.354.
  22. S. Sridhar, S. Latha, and A. Thakre, Constellation design for dual-mode OFDM-IM, in Proc. Int. Conf. Comput. Methodologies Commun. (ICCMC), (Erode, India), Mar. 2020, pp. 808-814, doi: 10.1109/ICCMC48092.2020.ICCMC000150.
  23. M. Jain et al., Adaptive bit and power allocation for dual mode index modulation based OFDM system, Phys. Commun. 40 (2020), 101093, doi: 10.1016/j.phycom.2020.101093.
  24. M. Wen et al., Joint-mapping orthogonal frequency division multiplexing with subcarrier number modulation, IEEE Trans. Commun. 69 (2021), no. 7, 4306-4318, doi: 10.1109/TCOMM.2021.3066584.
  25. J. Li et al., Low-complexity detection for index modulation multiple access, IEEE Wirel. Commun. Lett. 9 (2020), no. 7, 943-947, doi: 10.1109/LWC.2020.2974730.