
J. Korean Math. Soc. 60 (2023), No. 5, pp. 959–986

https://doi.org/10.4134/JKMS.j220341

pISSN: 0304-9914 / eISSN: 2234-3008
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RADIUS AND SIZE OF NON-BIPARTITE GRAPHS
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Abstract. Zhai and Lin recently proved that if G is an n-vertex con-

nected θ(1, 2, r+ 1)-free graph, then for odd r and n ⩾ 10r, or for even r

and n ⩾ 7r, one has ρ(G) ≤
√

⌊n2

4
⌋, and equality holds if and only if G

is K⌈n
2
⌉,⌊n

2
⌋. In this paper, for large enough n, we prove a sharp upper

bound for the spectral radius in an n-vertex H-free non-bipartite graph,
where H is θ(1, 2, 3) or θ(1, 2, 4), and we characterize all the extremal

graphs. Furthermore, for n ⩾ 137, we determine the maximum number

of edges in an n-vertex θ(1, 2, 4)-free non-bipartite graph and characterize
the unique extremal graph.

1. Introduction

We start by introducing the background information which will derive our
main results. Our main results and some preliminaries will also be given in this
section.

1.1. Background

In this paper, we consider only simple, undirected and finite graphs. Let
G = (V (G), E(G)) be a graph, where V (G) is its vertex set and E(G) is its
edge set. The order of G is the number |G| (or |V (G)|) of its vertices and
its size is the number |E(G)| of its edges. Denote by Pn, Cn,Kn and Kt,n−t

the path, the cycle, the complete graph and the complete bipartite graph on
n vertices, respectively. The theta graph θ(i, j, k) is formed by connecting two
distinct vertices with three independent paths of lengths i, j and k, respectively
(length refers to the number of edges). Unless otherwise stated, we follow the
traditional notation and terminology; see [3].

Let F be a given graph. We say a graph G is F -free if it does not contain F
as a subgraph. That is to say, F is forbidden in the graph G. The Turán number
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of F , written by ex(n, F ), is the maximum size of an n-vertex F -free graph.
Mantel and Turán determined this function exactly when F ∼= Kr+1. The
research for the Turán numbers attracts much attention, and it has become to
be one of the most attractive fundamental problems in extremal graph theory
(see [15,31] for surveys).

The Erdős-Stone-Simonovits theorem [11, 12] gives us the asymptotic be-
haviour of ex(n, F ) whenever χ(F ) ⩾ 3, here χ(F ) is the chromatic number of
F . Since then one is interested in considering the Turán problem when F is bi-
partite. Let Θℓ,t be the graph obtained by connecting two distinct vertices by t
independent paths of length ℓ. Faudree and Simonovits [13] and Bukh and Tait
[7] displayed the asymptotic behaviour of ex(n,Θℓ,t). Further on Verstraëte and

Williford [34] gave a lower bound of order n5/4 on the greatest number of edges
of any n-vertex Θ4,3-free graph. Even so it is challenging and interesting to
determine the exact values of ex(n, F ).

Let A(G) be the adjacency matrix of a graph G. The largest modulus of
all eigenvalues of A(G) is called the spectral radius of G and denoted by λ(G).
In 2010, Nikiforov [30] proposed a spectral analogue of Turán type problem:
what is the maximal spectral radius of an F -free graph on n vertices? This
is also called the Brualdi-Solheid-Turán type problem. This problem attracts
more and more researchers’ attention. For example, one may see F ∼= Kr

[6, 26, 27, 35], F ∼= Ks,t [2, 27, 29, 41], F ∼= Pk,
⋃k

i=1 Pai
or
⋃k

i=1 K1,di
[8, 9, 30],

and F ∼= C4, C6 or C2k+1 [27, 30, 39, 42]. For more information, we refer the
reader to [1,10,20,22–24,31,33]. Motivated by these works, the other purpose
of ours is to study the spectral Turán type problem.

We pay attention to one mathematical phenomenon: In some Turán type
problems the corresponding extremal graphs are certain bipartite graphs; see
Mantel Theorem [25], Zhai, Fang, and Shu [38], and Füredi and Gunderoson
[14], whereas in some spectral Turán type problems the corresponding extremal
graphs are also bipartite graphs; see Nikiforov [28], Nosal [32], and Zhai and Lin
[40]. Based on these observations, we consider both the Turán type problem
and the spectral Turán type problem among non-bipartite graphs in this pa-
per. Notice that there are only specific families of non-bipartite graphs whose
extremal graphs are known; see [4, 5, 16–18,21,23].

In this paper, we determine the exact value of Turán number of θ(1, 2, 4)
whose host graph is non-bipartite. We also consider the Brualdi-Solheid-Turán
type problem on θ(1, 2, 3)-free/θ(1, 2, 4)-free non-bipartite graphs with fixed
order.

1.2. Main results

Our first two main results determine the unique graph having the maximum
spectral radius among θ(1, 2, 3)-free and θ(1, 2, 4)-free non-bipartite graphs,
respectively. Let SKa,b denote the graph obtained from Ka,b by subdividing
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an edge, and let Ka,b •K3 be the graph obtained by identifying an edge of Ka,b

with an edge of K3; see Figure 1.

w
u1 v1

u2 v2

ua vb

...
...

SKa,b

w

u1 v1

u2 v2

ua vb

...
...

Ka,b •K3

w1w2

u1 v1

u2 v2

ua vb

...
...

Ka,b ◦K3

w1

u1 v1

u2 v2

ua vb

w2

...
...

Ka,b ⋆ θ(1, 2, 2)

Figure 1. The graphs SKa,b, Ka,b •K3, Ka,b ◦K3 and Ka,b ⋆ θ(1, 2, 2).

Theorem 1.1. Let G be a non-bipartite graph with order n ⩾ 20. If G is
θ(1, 2, 3)-free, then

λ(G) ⩽ λ(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋).

Equality holds if and only if G ∼= SK⌈n−1
2 ⌉,⌊n−1

2 ⌋.

Theorem 1.2. Let G be a non-bipartite graph with order n ⩾ 21. If G is
θ(1, 2, 4)-free, then

λ(G) ⩽ λ(K⌈n−1
2 ⌉,⌊n−1

2 ⌋ •K3).

Equality holds if and only if G ∼= K⌈n−1
2 ⌉,⌊n−1

2 ⌋ •K3.

For convenience, let

exnb(n,H) = max{|E(G)| : G is an H-free non-bipartite graph with order n}.

Bataineh, Jaradat and Al-Shboul [5] obtained exnb(n, θ(1, 2, 3)) = ⌊ (n−1)2

4 ⌋+1
for n ⩾ 9 (see Lemma 1.10 below). Motivated by this result, our next result
determines the exact value of exnb(n, θ(1, 2, 4)) for n ⩾ 137.



962 S. C. LI, W. T. SUN, AND W. WEI

Theorem 1.3. Let n ⩾ 137 be an integer. Then

exnb(n, θ(1, 2, 4)) =

⌊
(n− 1)2

4

⌋
+ 2.

The only extremal graph is K⌈n−1
2 ⌉,⌊n−1

2 ⌋ •K3.

The remainder of this paper is organized as follows. In the rest of this
section, we give some preliminary results, which will be used in the subsequent
sections. In Section 2, we give the proof of Theorem 1.1. In Section 3, we
present the proofs of Theorems 1.2 and 1.3. Some concluding remarks are
given in the last section.

1.3. Preliminaries

In this subsection, we describe some known results, which play an important
role in the subsequent sections.

Lemma 1.4 ([3]). Let G be a connected graph and let H be a proper subgraph
of G. Then λ(H) < λ(G).

Let G be a connected graph on n vertices. Then A(G) is irreducible and
nonnegative. From the Perron-Frobenius Theorem, we know that λ(G) is the
largest eigenvalue of A(G) and there exists a unique positive unit eigenvector
x := (x1, . . . , xn)

T of A(G) corresponding to λ(G). We call x the Perron vector
of G. It will be convenient to associate a labeling of vertices of G (with respect
to x) in which xv is a label of the vertex v.

The set of neighbors of a vertex u is denoted by NG(u). Let NG[u] =
NG(u) ∪ {u}. The degree dG(u) of a vertex u (in G) is the cardinality of
NG(u). If U ⊂ V (G), then we write G[U ] to denote the induced subgraph of
G with vertex set U . An induced subgraph of G obtained by deleting a set of
vertices V ′ ⊂ V (G) is denoted by G − V ′. Similarly, G − E′ designates the
deletion of a subset of edges E′. By G+ e we denote a graph obtained from G
by inserting a single edge.

Lemma 1.5 ([36]). Let G be a connected graph and let x be the Perron vector
of G. Assume that u and v are two distinct vertices of G with xu ⩾ xv and
{vi : 1 ⩽ i ⩽ s} ⊆ NG(v) \ NG[u]. If G

′ = G − {vvi : 1 ⩽ i ⩽ s} + {uvi : 1 ⩽
i ⩽ s}, then λ(G′) > λ(G).

Let H be a real square matrix, whose columns and rows are indexed by
U = {1, 2, . . . , n}. Assume that π := U1∪U2∪· · ·∪Ut is a partition of U . Then
H can be partitioned based on π as follows.

H =

 H11 · · · H1t

...
. . .

...
Ht1 · · · Htt

 ,

where Hij denotes the submatrix of H, indexed by the rows and columns of Ui

and Uj , respectively. Let πij be the average row sum of Hij for 1 ⩽ i, j ⩽ t.
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Usually, the matrix Hπ = (πij) is called the quotient matrix of H. Moreover,
if the row sum of Hij is constant for 1 ⩽ i, j ⩽ t, then we call π an equitable
partition.

Lemma 1.6 ([37]). Let H be a real square matrix with an equitable partition
π, and let Hπ be the corresponding quotient matrix. Then every eigenvalue of
Hπ is an eigenvalue of H. In addition, if H = A(G) for some graph G, then
the spectral radius of G is equal to the largest eigenvalue of Hπ.

Denote by Ka,b ◦ K3 the graph obtained by identifying a vertex of Ka,b

belonging to the part of size b and a vertex of K3; see Figure 1.

Lemma 1.7 ([40]). Let a + b = n − 2 and a ⩾ b ⩾ 2. If n ⩾ 10, then
λ(Ka,b ◦K3) ⩽ λ(K⌈n−2

2 ⌉,⌊n−2
2 ⌋ ◦K3) with equality if and only if Ka,b ◦K3

∼=
K⌈n−2

2 ⌉,⌊n−2
2 ⌋ ◦K3.

Lemma 1.8 ([23]). Let G be a C3-free non-bipartite graph with order n. Then
λ(G) ⩽ λ(SK⌈n−1

2 ⌉,⌊n−1
2 ⌋) with equality if and only if G ∼= SK⌈n−1

2 ⌉,⌊n−1
2 ⌋.

Lemma 1.9 ([40]). Let G be a θ(1, 2, r + 1)-free graph with order n. Then

λ(G) ⩽
√

⌊n2

4 ⌋ for n ⩾ 10r if r is odd and n ⩾ 7r if r is even. Equality holds

if and only if G ∼= K⌈n
2 ⌉,⌊n

2 ⌋.

Lemma 1.10 ([5]). Let n ⩾ 9 be an integer. Then exnb(n, θ(1, 2, 3)) =

⌊ (n−1)2

4 ⌋+ 1.

2. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1, which characterizes the
unique graph having the maximum spectral radius among θ(1, 2, 3)-free non-
bipartite graphs of given order. Before giving the proof, we need the following
key lemma.

Let Ka,b ⋆ θ(1, 2, 2) be the last graph depicted in Figure 1. Clearly, Ka,b ⋆
θ(1, 2, 2) can be obtained from Ka,b by replacing one edge with θ(1, 2, 2). In
the following lemma, we adopt the labels for vertices in Figure 1.

Lemma 2.1. For n ⩾ 20, we have

λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ⋆ θ(1, 2, 2)) < λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ◦K3) < λ(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋).

Proof. Firstly, we prove λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ⋆ θ(1, 2, 2)) < λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ◦ K3).

Clearly, π1 := {w1, w2}∪{u1}∪{v1}∪{v2, . . . , v⌊n−2
2 ⌋}∪{u2, . . . , u⌈n−2

2 ⌉} is an

equitable partition of A(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ⋆ θ(1, 2, 2)). Hence the quotient matrix

corresponding to π1 can be written as follows.

A(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ⋆ θ(1, 2, 2))
π1 =


1 1 1 0 0
2 0 0 ⌊n

2 ⌋ − 2 0
2 0 0 0 ⌈n

2 ⌉ − 2
0 1 0 0 ⌈n

2 ⌉ − 2
0 0 1 ⌊n

2 ⌋ − 2 0

 .
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Therefore, the characteristic polynomial of A(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ⋆ θ(1, 2, 2))
π1 is

f(x)=

{
x5 − x4 − (n

2

4 − n+ 4)x3 + (n
2

4 − n)x2 + ( 5n
2

4 − 8n+ 12)x− 5n2

4 + 10n− 20, if n is even;

x5 − x4 − (n
2+15
4 − n)x3 + (n

2−1
4 − n)x2 + ( 5n

2+43
4 − 8n)x− 5n2+75

4 + 10n, if n is odd.

Similarly, one may see that π2 := {w1, w2}∪{v1}∪{u1}∪{u2, . . . , u⌈n−2
2 ⌉}∪

{v2, . . . , v⌊n−2
2 ⌋} is an equitable partition of A(K⌈n−2

2 ⌉,⌊n−2
2 ⌋ ◦ K3). Then the

corresponding quotient matrix can be given as

A(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ◦K3)
π2 =


1 1 0 0 0
2 0 1 ⌈n

2 ⌉ − 2 0
0 1 0 0 ⌊n

2 ⌋ − 2
0 1 0 0 ⌊n

2 ⌋ − 2
0 0 1 ⌈n

2 ⌉ − 2 0

 .

Consequently, the characteristic polynomial of A(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ◦K3)
π2 is

g(x) =

{
x5 − x4 − (n

2

4 − n+ 3)x3 + (n
2

4 − n+ 1)x2 + (n
2

2 − 3n+ 4)x, if n is even;

x5 − x4 − (n
2+11
4 − n)x3 + 3

4x
2 + (n

2+5
2 − 3n)x, if n is odd.

In view of Lemma 1.6, one obtains that λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ⋆ θ(1, 2, 2)) and

λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ◦ K3) equal the largest roots of f(x) = 0 and g(x) = 0,

respectively. Together with Lemmas 1.4 and 1.9, we know that the largest

root f(x) = 0 (resp. g(x) = 0) lie in the interval

(√
⌊ (n−3)2

4 ⌋,
√
⌊n2

4 ⌋
)

(resp.(√
⌊ (n−2)2

4 ⌋,
√
⌊n2

4 ⌋
)
).

By some calculations, we find that

f(x)−g(x) =

{
−x3 − x2 + ( 3n

2

4 − 5n+ 8)x− 5n2

4 + 10n− 20, if n is even;

−x3 − x2 + ( 3n
2+33
4 − 5n)x− 5n2+75

4 + 10n, if n is odd.

By using Mathematica 9.0, we get

min

{
f(x)− g(x) :

√
⌊ (n− 3)2

4
⌋ < x <

√
⌊n

2

4
⌋, n ⩾ 20

}
> 0.

It follows that the largest root of f(x) = 0 is less than that of g(x) = 0. That
is, λ(K⌈n−2

2 ⌉,⌊n−2
2 ⌋ ⋆ θ(1, 2, 2)) < λ(K⌈n−2

2 ⌉,⌊n−2
2 ⌋ ◦K3), as desired.

Next, we show λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ◦ K3) < λ(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋). Clearly, π3 :=

{u1}∪{w}∪{v1}∪{u2, . . . , u⌈n−1
2 ⌉}∪{v2, . . . , v⌊n−1

2 ⌋} is an equitable partition
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of A(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋). Hence the corresponding quotient matrix is

A(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋)
π3 =


0 1 0 0 ⌊n−1

2 ⌋ − 1
1 0 1 0 0
0 1 0 ⌈n−1

2 ⌉ − 1 0
0 0 1 0 ⌊n−1

2 ⌋ − 1
1 0 0 ⌈n−1

2 ⌉ − 1 0

 .

Therefore, we obtain the characteristic polynomial of A(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋)
π3 as

h(x) =

{
x5 − n2−2n+4

4 x3 + 3n2−14n+12
4 x− n2−6n+8

2 , if n is even;

x5 − n2−2n+5
4 x3 + 3n2−14n+15

4 x− n2−6n+9
2 , if n is odd.

Combining with Lemma 1.6, one has that λ(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋) is equal to the

largest root of h(x) = 0.
By some calculations, we see that

g(x)− h(x) =

{
−x4 + n−4

2 x3 + n2−4n+4
4 x2 − n2−2n−4

4 x+ n2−6n+8
2 , if n is even;

−x4 + n−3
2 x3 + n2−4n+3

4 x2 − n2−2n+5
4 x+ n2−6n+9

2 , if n is odd.

Applying Mathematica 9.0 again yields

min

{
g(x)− h(x) :

√
⌊ (n− 2)2

4
⌋ < x <

√
⌊n

2

4
⌋, n ⩾ 20

}
> 0.

It follows that the largest root of g(x) = 0 is less than that of h(x) = 0, which
implies λ(K⌈n−2

2 ⌉,⌊n−2
2 ⌋ ◦K3) < λ(SK⌈n−1

2 ⌉,⌊n−1
2 ⌋), as desired. □

For a given graph G, let S and T be subgraphs and/or vertex subsets of G.
Define EG(S, T ) to be the set of edges with one endpoint in S and the other
in T. Then denote e(S, T ) := |EG(S, T )|. In particular, EG(S, S) and e(S, S)
are simplified by EG(S) and e(S), respectively. Furthermore, if T = {v}, then
denote dS(v) := e(S, {v}).

For k ⩾ 2, we use Nk
G(u) to denote the set of vertices at distance k from u.

Let W be a subgraph or a vertex subset of G. Then denote by NG(W ) the set
of neighbors of vertices in W. In the whole context, when there is no scope for
ambiguity, we always suppress the graph name from our notation.

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let G∗ be a θ(1, 2, 3)-free non-bipartite graph of order
n having the maximum spectral radius. For convenience, denote λ∗ = λ(G∗).
It is routine to check that SK⌈n−1

2 ⌉,⌊n−1
2 ⌋ is a θ(1, 2, 3)-free non-bipartite graph

with order n. Together with the choice of G∗ and Lemma 2.1, we get that

λ∗ ⩾ λ(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋) > λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ◦K3)

> λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋) =

√⌊
(n− 2)2

4

⌋
.(2.1)
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If G∗ is C3-free, then by Lemma 1.8 one has λ∗ ⩽ λ(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋) with

equality if and only if G ∼= SK⌈n−1
2 ⌉,⌊n−1

2 ⌋, as desired.

So, in what follows, we just consider the case that C3 is a subgraph of G∗. In
view of Lemma 1.4 and the choice of G∗, we know that G∗ is connected. Let x
be the Perron vector of G∗ and u∗ be a vertex of G∗ such that xu∗ = max{xv :
v ∈ V (G∗)}. Recall that G∗ is θ(1, 2, 3)-free. Then G∗[N(u∗)] is P4-free. It

follows that each component of G∗[N(u∗)] is in
⋃3

i=0 Ti, where

(i) T0 consists of all trivial components;
(ii) T1 is the disjoint union of P2;
(iii) T2 is the disjoint union of stars with order at least three;
(iv) T3 is the disjoint union of K3.

Denote U0 = N(T0)∩N2(u∗) and U(T ) = N(T )∩N2(u∗) for each nontrivial
subgraph T of G∗[N(u∗)]. Applying the fact that G∗ is θ(1, 2, 3)-free again, we
obtain the following claim.

Claim 2.2. The following items hold:

(i) U(Ti) ∩ U(Tj) = ∅ for 0 ⩽ i < j ⩽ 3;
(ii) U(T 1

1 ) ∩ U(T 2
1 ) = ∅ for any two components T 1

1 and T 2
1 in T1;

(iii) e(v,N(u∗)) = 1 for any vertex v ∈ U(T2) ∪ U(T3);
(iv) either |N(v1) ∩N(v2) ∩N(u∗)| = 0, or |(N(v1) ∪N(v2)) ∩N(u∗)| = 1

holds for each edge v1v2 ∈ E(N2(u∗)).

Based on (2.1), one has⌊
(n− 2)2

4

⌋
xu∗ < λ∗2xu∗ =

∑
v∈V (G)

a
(2)
vu∗xv

= d(u∗)xu∗+
∑

v∈N(u∗)\V (T0)

dN(u∗)(v)xv+
∑

w∈N2(u∗)

dN(u∗)(w)xw

⩽
(
|N(u∗)|+ 2e(N(u∗)) + e(N(u∗), N2(u∗))

)
xu∗ ,(2.2)

where a
(2)
vu∗ denotes the number of walks of length 2 from v to the vertex u∗.

Let γ(u∗) = |N(u∗)|+ 2e(N(u∗)) + e(N(u∗), N2(u∗)). Then (2.2) gives

(2.3) γ(u∗) >

⌊
(n− 2)2

4

⌋
, i.e., γ(u∗) ⩾

⌊
(n− 2)2

4

⌋
+ 1.

Denote the number of components of T2 by c. Notice that |T1| = 2e(T1),
|T2| = e(T2) + c, and |T3| = e(T3). Hence

(2.4) e(N(u∗)) =
|T1|
2

+ |T2| − c+ |T3|.

Based on Claim 2.2, one has

e(N(u∗), N2(u∗)) =

3∑
i=0

|E(Ti, U(Ti))|
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⩽ |T0||U0|+ 2|U(T1)|+ |U(T2)|+ |U(T3)|.(2.5)

Furthermore,

(2.6)

3∑
i=0

(|Ti|+ |U(Ti)|) ⩽ n− 1 and so |T2|+ |T3| ⩽ n− 1− |T0| − |U0|.

Together with (2.4)-(2.6), we obtain that

γ(u∗) = |N(u∗)|+ 2e(N(u∗)) + e(N(u∗), N2(u∗))

⩽ |N(u∗)|+ |T1|+ 2|T2| − 2c+ 2|T3|+ |T0||U0|
+ 2|U(T1)|+ |U(T2)|+ |U(T3)|

⩽ 2(n− 1) + |T2|+ |T3| − 2c+ (|T0| − 2)|U0| − |T0| − |U(T2)| − |U(T3)|
⩽ 3(n− 1)− 2c+ (|T0| − 3)|U0| − 2|T0| − |U(T2)| − |U(T3)|
⩽ 3(n− 1) + (|T0| − 3)|U0| − 2|T0|
⩽ 3(n− 1) + (|T0| − 3)(|U0| − 2)− 6

⩽
(|T0|+ |U0| − 5)2

4
+ 3(n− 3).

Together with (2.3) we obtain

(|T0|+ |U0| − 5)2

4
⩾ ⌊ (n− 2)2

4
⌋ − 3(n− 3) + 1

⩾
(n− 2)2 − 1

4
− 3n+ 10

=
(n− 8)2 − 21

4

>
(n− 9)2

4
,

and the last inequality follows by n ⩾ 20. Thus, n− 3 ⩽ |T0|+ |U0| ⩽ n− 1.
In what follows, we proceed by considering the following three cases with

respect to the value of |T0|+ |U0|.
Case 1. |T0| + |U0| = n − 1. In this case, V (T0) = N(u∗). Since G∗ is

non-bipartite, one has e(U0) ⩾ 1. Recall that xu∗ = max{xv : v ∈ V (G∗)}.
Hence |T0| ⩾ 2. We distinguish the proof into the following two subcases.

Subcase 1.1. e(U0) = 1. Note that G∗ contains C3 as a subgraph. Then
the two vertices of the unique edge in E(U0) have a common neighbor in T0.
Together with Lemma 1.4 and Claim 2.2(iv), we get G∗ ∼= Ka,b ◦K3 for some
positive integers a and b. Notice that a, b ⩾ 2. Otherwise, we can add an edge
between two pendant vertices of G∗ to get a θ(1, 2, 3)-free non-bipartite graph
with larger spectral radius, a contradiction. It follows from Lemma 1.7 that
G∗ ∼= K⌈n−2

2 ⌉,⌊n−2
2 ⌋◦K3. In view of Lemma 2.1, one has λ∗ < λ(SK⌈n−1

2 ⌉,⌊n−1
2 ⌋),

which contradicts the choice of G∗.
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Subcase 1.2. e(U0) ⩾ 2. Firstly, we consider the case that G∗[N2(u∗)]
contains a triangle C3 = w1w2w3w1. Then based on Claim 2.2(iv), one has

(2.7) γ(u∗) ⩽ |T0|+|T0|+1+|T0|(|U0|−3) = |T0|(|U0|−1)+1 ⩽

⌊
(n− 2)2

4

⌋
+1.

Together with (2.3), one has γ(u∗) = ⌊ (n−2)2

4 ⌋+ 1, that is to say, all equalities
in (2.7) hold. Then we have

(i) there exist two vertices wi and wj in C3 which are adjacent to exactly
one common vertex, say w, in T0;

(ii) wl (l ̸= i, j) is adjacent to all vertices in V (T0) \ {w};
(iii) each vertex in U0 \ {w1, w2, w3} is adjacent to all vertices in T0;
(iv) one of |T0| and |U0| − 1 equals ⌊n−2

2 ⌋, the other is ⌈n−2
2 ⌉.

Thus, G∗ ∼= K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ⋆ θ(1, 2, 2). By Lemma 2.1 and the choice of G∗, we

get a contradiction.
Next, we assume G∗[N2(u∗)] is triangle-free. Notice that G∗ contains C3 as

a subgraph. Hence there exists an edge, say uv, in E(U0) such that u and v
have a common neighbor in T0. Suppose that there is an edge in E(U0) which
is incident to neither u nor v. Together with Claim 2.2(iv), we obtain

γ(u∗) ⩽ |T0|+ 2 + |T0|+ |T0|(|U0| − 4) = |T0|(|U0| − 2) + 2 ⩽

⌊
(n− 3)2

4

⌋
+ 2,

which contradicts (2.3). Hence each edge in E(U0) is incident to u or v. Let
wu be an arbitrary edge of E(U0), where w ̸= v. Then w has at most |T0| − 1
neighbors in T0. It follows that

γ(u∗) ⩽ |T0|+ 2 + |T0|(|U0| − 2)− (e(U0)− 1)(2.8)

= |T0|(|U0| − 1)− e(U0) + 3

⩽

⌊
(n− 2)2

4

⌋
+ 1.(2.9)

Together with (2.3), one has γ(u∗) = ⌊ (n−2)2

4 ⌋+1. Thus, equalities in (2.8) and
(2.9) hold. By a similar discussion as that of (2.7), we get that G∗ is a graph
obtained from K⌈n−2

2 ⌉,⌊n−2
2 ⌋⋆θ(1, 2, 2) by deleting an edge. Together with Lem-

mas 1.4 and 2.1, we get λ∗ < λ(K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ⋆ θ(1, 2, 2)) < λ(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋),

a contradiction.
Case 2. |T0|+ |U0| = n− 2. In this case, V (T0) = N(u∗) and |N3(u∗)| = 1.

Since G∗ is non-bipartite, one has e(U0) ⩾ 1. Let uv be an edge of G∗[U0]. In
view of Claim 2.2(iv), one has e({u, v}, T0) ⩽ |T0|. Hence

γ(u∗) ⩽ |T0|+ |T0|+ |T0|(|U0| − 2) = |T0||U0| ⩽
⌊
(n− 2)2

4

⌋
,

which contradicts (2.3).
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Case 3. |T0|+ |U0| = n−3. In this case, either |T1| = 2 or |V (G∗)\ (N [u∗]∪
N2(u∗))| = 2 holds. We claim that e(U0) = 0. In fact, if e(U0) ⩾ 1, then
together with Claim 2.2(iv) one has

γ(u∗) ⩽ |T0|+ 4 + |T0|+ |T0|(|U0| − 2) = |T0||U0|+ 4 ⩽

⌊
(n− 3)2

4

⌋
+ 4,

which contradicts (2.3).
If |T1| = 2, then by Lemmas 1.4, 1.7 and the choice of G∗, we obtain G∗ ∼=

K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ◦K3. By Lemma 2.1, we get a contradiction.

If |V (G∗) \ (N [u∗] ∪N2(u∗))| = 2, then

γ(u∗) ⩽ |T0|+ |T0||U0| ⩽
⌊
(n− 2)2

4

⌋
,

which also contradicts (2.3).
Together with Cases 1-3, we obtain G∗ ∼= SK⌈n−1

2 ⌉,⌊n−1
2 ⌋. This completes

the proof. □

3. Proofs of Theorems 1.2 and 1.3

In this section, we give the proofs of Theorems 1.2 and 1.3, which characterize
the graph having the largest spectral radius and size among θ(1, 2, 4)-free non-
bipartite graphs with order n, respectively.

A cut-vertex of a graph is a vertex whose deletion increases the number of
components. A maximal connected subgraph without a cut-vertex is called
a block. The double star Di,j consists of two stars K1,i+1 and K1,j+1 joined
together so that they share an edge.

Firstly, we present the proof of Theorem 1.2.

Proof of Theorem 1.2. Let G∗ be a θ(1, 2, 4)-free non-bipartite graph of order
n with the maximum spectral radius. For convenience, denote λ∗ = λ(G∗).
Notice that K⌈n−1

2 ⌉,⌊n−1
2 ⌋ • K3 is a non-bipartite θ(1, 2, 4)-free graph. Hence

together with Lemma 1.4 one has

(3.1) λ∗ ⩾ λ(K⌈n−1
2 ⌉,⌊n−1

2 ⌋ •K3) > λ(K⌈n−1
2 ⌉,⌊n−1

2 ⌋) =

√⌊
(n− 1)2

4

⌋
⩾ 10.

If G∗ is C3-free, then by Lemma 1.8 one has λ∗ ⩽ λ(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋). Notice

that SK⌈n−1
2 ⌉,⌊n−1

2 ⌋ is a proper subgraph of K⌈n−1
2 ⌉,⌊n−1

2 ⌋ •K3. Then Lemma

1.4 implies λ∗ < λ(K⌈n−1
2 ⌉,⌊n−1

2 ⌋ •K3), a contradiction.

So, in what follows, we consider the case that C3 is a subgraph of G∗. In
view of Lemma 1.4 and the choice of G∗, we know that G∗ is connected. Let x
be the Perron vector of G∗ and xu∗ = max{xv : v ∈ V (G∗)}. The next claim
characterizes the local structures of G∗.

Claim 3.1. Any vertex in V (G∗)\{u∗} cannot be a cut vertex; hence d(u) ⩾ 2
for any u ∈ V (G∗) \N [u∗].
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Proof of Claim 3.1. Suppose to the contrary that there exists a cut vertex, say
w, in V (G∗) \ {u∗}. Let B be a block of G∗ with w ∈ V (B) and u∗ ̸∈ V (B).
Then we consider a new graph G1 = G∗−{wu : u ∈ V (B)}+{u∗u : u ∈ V (B)}.
It is easy to see that G1 is a θ(1, 2, 4)-free non-bipartite graph with order n.
On the other hand, by Lemma 1.5, one has λ(G1) > λ∗, which contradicts the
choice of G∗. □

Recall that G∗ is θ(1, 2, 4)-free. Then G∗[N(u∗)] is P5-free. Hence each

component of G∗[N(u∗)] is in
⋃5

i=0 Hi, where

(i) H0 consists of all trivial components;
(ii) H1 is the disjoint union of stars K1,r for r ⩾ 1;
(iii) H2 is the disjoint union of double stars Da,b for a, b ⩾ 1;
(iv) H3 is the disjoint union of K3;
(v) H4 is the disjoint union of C4, C4 + e and K4;
(vi) H5 is the disjoint union of K1,r + e for r ⩾ 3.

Define U0 = N2(u∗)∩N(H0) and U(H) = N2(u∗)∩N(H) for each subgraph
H of G∗[N(u∗)]. Applying the fact that G∗ is θ(1, 2, 4)-free yields U(H) ∩
U(H ′) = ∅ for any two distinct components H and H ′ of G∗[N(u∗)] unless
H is an isolated vertex and H ′ is a star K1,r, where K1,0 denotes an isolated
vertex (in particular, the vertex in H ′ which has a common neighbor with the
vertex in H must be its central vertex). For any nontrivial component H of
G∗[N(u∗)], we define

η(H)=
∑

v∈V (H)

(dH(v)−1)xv+
∑

u∈U(H)\U0

dH(u)xu and ζ(H) = |H|+2|U(H)\U0|.

Now, we are to establish the relationship between η(H) and ζ(H) for each
nontrivial component H of G∗[N(u∗)].

Claim 3.2. Let H be a nontrivial component of G∗[N(u∗)]. Then the following
items hold.

(i) If H is a component of H1, then η(H) < ζ(H)xu∗ ;
(ii) If H is a component of H2, then η(H) < ζ(H)xu∗ ;
(iii) If H is a component of H3, then η(H) ⩽ (ζ(H) + 1)xu∗ ;
(iv) If H is a component of H4, then η(H) ⩽ (ζ(H) + 2)xu∗ ;
(v) If H is a component of H5, then η(H) ⩽ ζ(H)xu∗ .

Proof of Claim 3.2. (i) Assume that H ∼= K1,r for some r ⩾ 1. Then e(H) =
|H| − 1. If e(U(H) \ U0, V (H)) ⩽ 2|U(H) \ U0|, then

η(H) ⩽ (2e(H)− |H|+ e(U(H) \ U0, V (H)))xu∗

⩽ (|H| − 2 + 2|U(H) \ U0|)xu∗ < ζ(H)xu∗ ,

as desired.
Next, we assume that e(U(H)\U0, V (H)) > 2|U(H)\U0|. Then there exists

a vertex, say w, in U(H) \ U0 such that dH(w) ⩾ 3. It follows that |H| ⩾ 3.
If |H| ⩾ 4, then it is routine to check that θ(1, 2, 4) is a subgraph of G∗, a
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contradiction. Hence |H| = 3 and H ∼= K1,2. Applying the fact that G∗ is
θ(1, 2, 4)-free yields dH(w′) = 1 for each w′ ∈ U(H) \ (U0 ∪ {w}). Recall that
e(U(H) \ U0, V (H)) > 2|U(H) \ U0|. Then U(H) \ U0 = {w}. Therefore,

η(H) ⩽ (2e(H)− |H|+ e(U(H) \ U0, V (H)))xu∗ = 4xu∗ < ζ(H)xu∗ ,

as desired.
(ii) Let H be a component of H2. Then U(H) ∩ U0 = ∅ and dN(u∗)(u) = 1

for any u ∈ U(H). It follows that e(U(H), V (H)) = |U(H)|. Clearly, e(H) =
|H| − 1. Thus,

η(H) ⩽ (2e(H)−|H|+e(U(H), V (H)))xu∗ = (|H|−2+|U(H)|)xu∗ < ζ(H)xu∗ ,

as desired.
(iii) Let H be a component of H3, i.e., H ∼= C3. Notice that U(H) ∩U0 = ∅

and e(H) = |H|. If |U(H)| = 0, then

η(H) ⩽ (2e(H)− |H|)xu∗ = |H|xu∗ = ζ(H)xu∗ ,

as desired.
If |U(H)| = 1, then let u ∈ U(H).We may assume, without loss of generality,

that V (H) = {v1, v2, v3} and xv1 = max{xvi : i = 1, 2, 3}. Then v1 ∈ N(u) and
e(U(H), V (H)) ⩽ 3. It follows that

η(H) ⩽ (2e(H)− |H|+ e(U(H), V (H)))xu∗ ⩽ (|H|+ 3)xu∗ = (ζ(H) + 1)xu∗ ,

as desired.
If |U(H)| ⩾ 2, then together with the fact that G∗ is θ(1, 2, 4)-free, one of

the followings holds:
♣ U(H) contains exactly one vertex having three neighbors in V (H) and all

other vertices have only one neighbor in V (H);
♣ all vertices of U(H) have at most two neighbors in V (H).
In both cases, we get that e(U(H), V (H)) ⩽ 2|U(H)|. Thus,

η(H) ⩽ (2e(H)− |H|+ e(U(H), V (H)))xu∗ ⩽ (|H|+ 2|U(H)|)xu∗ = ζ(H)xu∗ ,

as desired.
(iv) Assume H is a component of H4. Notice that U(H)∩U0 = ∅. Since G∗

is θ(1, 2, 4)-free, we have dN(u∗)(u) = 1. If |U(H)| = 0, then let xv = max{xu :
u ∈ V (H)}. Hence λ∗xv ⩽ xu∗ + 3xv, that is, xv ⩽ xu∗

λ∗−3 ⩽ xu∗
7 . Therefore,

η(H) ⩽ (2e(H)− |H|)xv ⩽
8

7
xu∗ < (ζ(H) + 2)xu∗ ,

as desired.
If |U(H)| = 1, then let U(H) = {u}. Let v be a vertex in H such that uv ∈

E(G∗). Assume that V (H) = {v, v1, v2, v3} and xv1 = max{xvi : i = 1, 2, 3}.
Then λ∗xv1 ⩽ xu∗ + 2xv1 + xv ⩽ 2(xu∗ + xv1), i.e., xv1 ⩽ 2

λ∗−2xu∗ ⩽ 1
4xu∗ .

Therefore,

η(H) ⩽ 6xv1 + 2xv + |U(H)|xu∗ ⩽

(
7

2
+ |U(H)|

)
xu∗ < (ζ(H) + 2)xu∗ ,
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as desired.
If |U(H)| ⩾ 2, then

η(H) ⩽ (2e(H)− |H|+ |U(H)|)xu∗ ⩽ (|H|+ 4+ |U(H)|)xu∗ ⩽ (ζ(H) + 2)xu∗ ,

as desired.
(v) Let H be a component of H5. Then U(H) ∩ U0 = ∅ and dN(u∗)(u) = 1

for any u ∈ U(H). Hence e(U(H), V (H)) = |U(H)|. Together with the fact
that e(H) = |H|, we have

η(H) ⩽ (2e(H)− |H|+ e(U(H), V (H)))xu∗ = (|H|+ |U(H)|)xu∗ ⩽ ζ(H)xu∗ ,

as desired. □

With Claim 3.2 in hand, we are ready to give a lower bound on |U0|+ |H0|.
Let c3 and c4 denote the numbers of components of H3 and H4, respectively.
Since each vertex in U0 has at most two neighbors in N(u∗) \ V (H0), one has∑

w∈U0
dN(u∗)(w) ⩽ |U0||H0| + 2|U0|. We use H ∈ Hi to denote that H is

a component of Hi for i ∈ {0, 1, . . . , 5}. Together with Claim 3.2 and some
calculation we find that

(λ∗2 − λ∗)xu∗(3.2)

= |N(u∗)|xu∗ +
∑

v∈N(u∗)\V (H0)

(dN(u∗)(v)− 1)xv

+
∑

w∈N2(u∗)

dN(u∗)(w)xw

⩽ |N(u∗)|xu∗ +

5∑
i=1

∑
H∈Hi

η(H) +
∑
w∈U0

dN(u∗)(w)xw

⩽

(
|N(u∗)|+

5∑
i=1

∑
H∈Hi

ζ(H) + (c3 + 2c4) + (|U0||H0|+ 2|U0|)

)
xu∗

=

(
|N(u∗)|+

5∑
i=1

∑
H∈Hi

(|H|+ 2|U(H) \ U0|) + (c3 + 2c4) + (|U0||H0|+ 2|U0|)

)
xu∗

=
(
|N(u∗)|+ (|N(u∗)| − |H0|) + 2(|N2(u∗)| − |U0|) + (c3 + 2c4) + |U0|(|H0|+ 2)

)
xu∗

⩽ (2(n− 1) + (c3 + 2c4) + (|U0| − 1)|H0|)xu∗ .(3.3)

In view of (3.1), one has

(3.4) λ∗2 − λ∗ >

⌊
(n− 1)2

4

⌋
−

√⌊
(n− 1)2

4

⌋
>

(n− 1)2 − 1

4
− n

2
.

If |U0| ⩽ 1, then together with (3.3) and (3.4) one has

(n− 1)2 − 1

4
− n

2
< 2(n− 1) + (c3 + 2c4) < 3n− 2,
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which implies that n ⩽ 16, a contradiction. Hence |U0| ⩾ 2 and |H0| ⩾ 1.
Assume that |U0|+ |H0| = n − 1 − 3c3 − 4c4 − t. Then t ⩽ n − 4 − 3c3 − 4c4.
Combining with (3.3) and (3.4), we get

(n− 1)2 − 1

4
− n

2
< 2(n− 1) + (c3 + 2c4) + (|U0| − 1)|H0|

⩽ 2(n− 1) + (c3 + 2c4) +
(n− 2− 3c3 − 4c4 − t)2

4
,

which is equivalent to

− t2 − 4t+ 2tn− 8n+ 4

< 9c23 + 16c24 + 24c3c4 − 6

(
n− 8

3
− t

)
c3 − 8(n− 3− t)c4.(3.5)

Next, we proceed by considering the following five possible subcases.
♠ c3 = c4 = 0. Then n ⩾ 3c3 + 4c4 + t+ 4 = t+ 4 and (3.5) becomes

−t2 − 4t+ 2tn− 8n+ 4 < 0.

Clearly, −t2−4t+2tn−8n+4 is an increasing function in t with t ∈ [5, n−4].
Therefore, −t2 − 4t + 2tn − 8n + 4 ⩾ 2n − 41 > 0 if n ⩾ 21, a contradiction.
Thus, t ∈ {0, 1, 2, 3, 4} and so n− 5 ⩽ |U0|+ |H0| ⩽ n− 1.

♠ c3 = 1 and c4 = 0. Then n ⩾ 3c3 + 4c4 + t+ 4 = t+ 7 and (3.5) becomes

−t2 − 4t+ 2tn− 8n+ 4 < 25 + 6t− 6n, i.e., − t2 − 10t+ 2tn− 2n− 21 < 0.

Obviously, −t2 − 10t + 2tn − 2n − 21 is an increasing function in t with t ∈
[3, n − 7]. Hence, −t2 − 10t + 2tn − 2n − 21 ⩾ 4n − 60 ⩾ 0 if n ⩾ 15, a
contradiction. Thus, t ∈ {0, 1, 2}. It follows that n− 6 ⩽ |U0|+ |H0| ⩽ n− 4.

♠ c3 = 0 and c4 = 1. Then n ⩾ 3c3 + 4c4 + t+ 4 = t+ 8 and (3.5) becomes

−t2 − 4t+ 2tn− 8n+ 4 < 40 + 8t− 8n, i.e., − t2 − 12t+ 2tn− 36 < 0.

Clearly, −t2 − 12t+ 2tn− 36 is an increasing function in t with t ∈ [2, n− 8].
Hence −t2− 12t+2tn− 36 ⩾ 4n− 64 ⩾ 0 if n ⩾ 16, a contradiction. Therefore
t ∈ {0, 1}, which implies n− 6 ⩽ |U0|+ |H0| ⩽ n− 5.

♠ c3 = c4 = 1. Then n ⩾ 3c3 + 4c4 + t+ 4 = t+ 11 and (3.5) becomes

−t2 − 4t+ 2tn− 8n+ 4 < 89 + 14t− 14n, i.e., − t2 − 18t+ 2tn+ 6n− 85 < 0.

It is routine to check that −t2 − 18t+ 2tn+ 6n− 85 is an increasing function
in t with t ∈ [0, n− 11]. Therefore, −t2 − 18t+ 2tn+ 6n− 85 ⩾ 6n− 85 ⩾ 0 if
n ⩾ 15, which is also a contradiction.

♠ c3 ⩾ 2 or c4 ⩾ 2. Then n ⩾ 3c3 + 4c4 + t + 4 ⩾ t + 10. Let φ(x, y) =
9x2 + 16y2 + 24xy− 6(n− 8

3 − t)x− 8(n− 3− t)y be a real function in x, y for
x ∈ [0,+∞), y ∈ [0,+∞) with n ⩾ 3x+ 4y + t+ 3. It is routine to check that
the derivative functions of φ(x, y) with respect to x and y are, respectively,

d(φ(x, y))

dx
= 18x+ 24y − 6

(
n− 8

3
− t

)
= 6

(
3x+ 4y + t+

8

3
− n

)
< 0
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and

d(φ(x, y))

dy
= 32y + 24x− 8 (n− 3− t) = 8 (3x+ 4y + t+ 3− n) ⩽ 0.

It follows that φ(x, y) is a decreasing function for x (resp. y).
If c3 ⩾ 2, then

φ(c3, c4) ⩽ φ(2, 0) = 68 + 12t− 12n.

Together with (3.5), one has

−t2 − 4t+ 2tn− 8n+ 4 < 68 + 12t− 12n, i.e., − t2 − 16t+ 2tn+ 4n− 64 < 0.

On the other hand, it is easy to check that −t2−16t+2tn+4n−64 ⩾ 4n−64 > 0
for t ∈ [0, n− 10] and n ⩾ 21, a contradiction.

For c4 ⩾ 2, by a similar discussion as that of c3 ⩾ 2, we may get a contra-
diction.

Together with the discussion as above, we have if n ⩾ 21, then (c3, c4) ∈
{(0, 0), (0, 1), (1, 0)} and

|U0|+ |H0| ∈


[n− 5, n− 1], if (c3, c4) = (0, 0);

[n− 6, n− 4], if (c3, c4) = (1, 0);

[n− 6, n− 5], if (c3, c4) = (0, 1).

(3.6)

Similar to (2.2), one has⌊
(n− 1)2

4

⌋
< λ∗2 ⩽ |N(u∗)|+ 2e(N(u∗)) + e(N(u∗), N2(u∗)).

Denote β(u∗) = |N(u∗)|+ 2e(N(u∗)) + e(N(u∗), N2(u∗)). Hence

(3.7) β(u∗) >

⌊
(n− 1)2

4

⌋
, i.e., β(u∗) ⩾

⌊
(n− 1)2

4

⌋
+ 1.

Bear in mind that G∗ is θ(1, 2, 4)-free. For each edge uv ∈ E(N2(u∗)), one
has |N(u) ∩N(v) ∩N(u∗)| ⩽ 2. Moreover, if |N(u) ∩N(v) ∩N(u∗)| = 2, then
|(N(u) ∪N(v)) ∩N(u∗)| = 2. That is to say,

(3.8) e({u, v}, N(u∗)) ⩽ |N(u∗)|+ 1 if |N(u∗)| ⩾ 3.

Now, we distinguishing our proof into the following four possible case with
respect to the value of |U0|+ |H0|.

Case 1. |U0| + |H0| = n − 1. In this case, V (G∗) = {u∗} ∪ V (H0) ∪ U0. If
|H0| ⩽ 2, then

β(u∗) ⩽ |H0|+ |U0||H0| ⩽ 2n− 4 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction to (3.7). Hence |H0| ⩾ 3.
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Since G∗ is non-bipartite, one has e(U0) ⩾ 1. If G∗[U0] contains a C3 =
w1w2w3w1, then all vertices of C3 must share a unique common neighbor in
H0. Otherwise, G∗ contains θ(1, 2, 4) as a subgraph, a contradiction. Hence

β(u∗) ⩽ |H0|+ 3 + |H0|(|U0| − 3) = |H0|(|U0| − 2) + 3

⩽

⌊
(n− 3)2

4

⌋
+ 3 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction. Thus, G∗[U0] is C3-free. Notice that G∗ contains C3 as a
subgraph. Then there exists an edge, say uv, in G∗[U0] such that u and v have
a common neighbor, say w, in H0.

Next, we show that e(U0) = 1. Suppose to the contrary that e(U0) ⩾ 2. Let
u′v′ be an edge other than uv in G∗[U0]. If u

′v′ is incident to neither u nor v,
then in view of (3.8) one has

β(u∗) ⩽ |H0|+ 2(|H0|+ 1) + |H0|(|U0| − 4) = |H0|(|U0| − 1) + 2

⩽

⌊
(n− 2)2

4

⌋
+ 2 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction. Hence each edge in G∗[N(u∗)] is adjacent to either u or v.
Without loss of generality, we assume that u = u′. Since G∗ is θ(1, 2, 4)-free,
one has N(v′) ∩ (N(u∗) \ {w}) = ∅. Together with the proof of (3.8), we have

β(u∗) ⩽ |H0|+ |H0|+ 2 + |H0|(|U0| − 3) = |H0|(|U0| − 1) + 2

⩽

⌊
(n− 2)2

4

⌋
+ 2 <

⌊
(n− 1)2

4

⌋
+ 1,

which is also a contradiction. Therefore, e(U0) = 1.
If |N(u) ∩N(v) ∩N(u∗)| = 2, then

β(u∗) ⩽ |H0|+ 4 + |H0|(|U0| − 2) = |H0|(|U0| − 1) + 4

⩽

⌊
(n− 2)2

4

⌋
+ 4 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction. Hence |N(u) ∩ N(v) ∩ N(u∗)| = 1. In view of Lemma 1.4,
one has (N(u) ∪ N(v)) ∩ N(u∗) = N(u∗) and N(w′) ∩ N(u∗) = N(u∗) for
each w′ ∈ U0 \ {u, v}. Assume, without loss of generality, that xu ⩾ xv. Then
N(v)∩N(u∗) = {w}. Otherwise, let G′ = G∗−{vv′ : v′ ∈ N(u∗)\{w}}+{uv′ :
v′ ∈ N(u∗)\{w}}. Clearly, G′ is a non-bipartite θ(1, 2, 4)-free graph with order
n. By Lemma 1.5, one has λ∗ < λ(G′), which contradicts the choice of G∗. It
follows that NG∗(u∗) ⊊ NG∗(u), which implies xu > xu∗ , a contradiction.

Case 2. |U0|+|H0| = n−2. In this case, V (G∗) = {u∗}∪V (H0)∪U0∪N3(u∗)
and |N3(u∗)| = 1. Then

β(u∗) ⩽ |H0|+ |H0||U0| = |H0|(|U0|+ 1) ⩽

⌊
(n− 1)2

4

⌋
<

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction.
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Case 3. |U0|+|H0| = n−3. In this case, either |V (G∗)\(N [u∗]∪N2(u∗))| = 2
or G∗[N(u∗)] contains exactly one edge. If |H0| ⩽ 2, then

β(u∗) ⩽ |H0|+ 4 + |U0|(|H0|+ 2) ⩽ 4n− 14 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction. Hence |H0| ⩾ 3.
Firstly, we assume |V (G∗) \ (N [u∗] ∪N2(u∗))| = 2. Then

β(u∗) ⩽ |H0|+ |U0||H0| ⩽
⌊
(n− 2)2

4

⌋
<

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction.
In what follows, we consider the case that G∗[N(u∗)] contains one edge

w1w2. Then we have the following claim.

Claim 3.3. e(U0) = 0.

Proof of Claim 3.3. Suppose that e(U0) ⩾ 1 and let uv be an edge in G∗[U0].
Define

Ai = {w ∈ U0 \ {u, v} : N(w) ∩ {w1, w2} = {wi}} for i ∈ {1, 2}

and

A3 = {w ∈ U0 \ {u, v} : N(w) ∩ {w1, w2} = {w1, w2}}.
Based on the fact that G∗ is θ(1, 2, 4)-free, one has N(A1) ∩ N(A2 ∪ A3) ∩
V (H0) = ∅ and N(A2) ∩ N(A1 ∪ A3) ∩ V (H0) = ∅. Moreover, each pair of
vertices in A3 have no common neighbor in V (H0). Denote si = |{u : u ∈
N(Ai) ∩ V (H0)}| for i ∈ {1, 2, 3}. Then s1 + s2 + s3 ⩽ |H0|. We may assume
s1 ⩾ s2.

If s1 ⩾ 1 and |H0| ⩾ s1 + 1, then |A1 ∪ A2 ∪ A3| ⩾ 1. Hence together with
(3.8), one has

β(u∗) ⩽ |H0|+ 4 +

2∑
i=1

|Ai|(si + 1) + 2|A3|+ s3

+ (|U0| − |A1 ∪A2 ∪A3| − 2)|H0|+ |H0|+ 3

⩽ (|A1|+ |A2|)(s1 + 1) + 2|A3|+ (|H0| − s1)

+ (|U0| − |A1 ∪A2 ∪A3|)|H0|+ 7

= (|A1|+ |A2| − 1)(s1 + 1) + 2|A3|
+ (|U0| − |A1 ∪A2 ∪A3|+ 1)|H0|+ 8

⩽ (|A1 ∪A2 ∪A3| − 1)(s1 + 1) + (|U0| − |A1 ∪A2 ∪A3|+ 1)|H0|+ 8

= |U0||H0| − (|A1 ∪A2 ∪A3| − 1)(|H0| − s1 − 1) + 8

⩽ |U0||H0|+ 8 ⩽

⌊
(n− 3)2

4

⌋
+ 8 <

⌊
(n− 1)2

4

⌋
+ 1,(3.9)

a contradiction. Therefore, either s1 = 0 or |H0| = s1 holds.
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If s1 = 0, then s2 = 0 and (3.9) becomes

β(u∗) ⩽ |H0|+ 4 +

2∑
i=1

|Ai|+ 2|A3|+ s3

+ (|U0| − |A1 ∪A2 ∪A3| − 2)|H0|+ |H0|+ 3

⩽ (|A1|+ |A2|) + 2|A3|+ (|U0| − |A1 ∪A2 ∪A3|+ 1)|H0|+ 7

⩽ 2(|A1 ∪A2 ∪A3| − 1) + (|U0| − |A1 ∪A2 ∪A3|+ 1)|H0|+ 9

⩽ |U0||H0| − (|A1 ∪A2 ∪A3| − 1)(|H0| − 2) + 9

⩽ |U0||H0|+ |H0| − 2 + 9

⩽

⌊
(n− 2)2

4

⌋
+ 7 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction.
If |H0| = s1, then s2 = s3 = 0 and (3.9) becomes

β(u∗) ⩽ |H0|+ 4 + |A1|(|H0|+ 1) + |A2|+ 2|A3|
+ (|U0| − |A1 ∪A2 ∪A3| − 2)|H0|+ |H0|+ 3

= |A1|+ |A2|+ 2|A3|+ (|U0| − |A2 ∪A3|)|H0|+ 7

⩽ |U0|+ |A3|+ (|U0| − |A2 ∪A3|)|H0|+ 7

⩽ |U0|(|H0|+ 1)− |A2 ∪A3|(|H0| − 1) + 7

⩽ |U0|(|H0|+ 1) + 7

⩽

⌊
(n− 2)2

4

⌋
+ 7 <

⌊
(n− 1)2

4

⌋
+ 1,

which also contradicts (3.7). Thus, e(U0) = 0.
This completes the proof of Claim 3.3. □

Now, we define

A′
i = {w ∈ U0 : N(w) ∩ {w1, w2} = {wi}} for i ∈ {1, 2}

and
A′

3 = {w ∈ U0 : N(w) ∩ {w1, w2} = {w1, w2}}.
Since G∗ is θ(1, 2, 4)-free, one has N(A′

1) ∩ N(A′
2 ∪ A′

3) ∩ V (H0) = ∅ and
N(A′

2) ∩N(A′
1 ∪ A′

3) ∩ V (H0) = ∅. Moreover, each pair of vertices in A′
3 have

no common neighbor in H0. Assume s′i = |{u : u ∈ N(A′
1) ∩ V (H0)}| for

i ∈ {1, 2, 3} and s′1 ⩾ s′2. If s
′
1 ⩾ 1 and |H0| ⩾ s′1 + 1, then |A′

1 ∪A′
2 ∪A′

3| ⩾ 1.
By a similar discussion as (3.9), one has

β(u∗) ⩽ |H0|+ 4 +

2∑
i=1

|A′
i|(s′i + 1) + 2|A′

3|+ s′3 + (|U0| − |A′
1 ∪A′

2 ∪A′
3|)|H0|

⩽ (|U0|+ 1)|H0|+ 5 ⩽

⌊
(n− 2)2

4

⌋
+ 5 <

⌊
(n− 1)2

4

⌋
+ 1,
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a contradiction. Therefore, either s′1 = 0 or |H0| = s′1 holds.
If s′1 = 0, then s′2 = 0. Together with Claim 3.1, we get |A′

1| = |A′
2| = 0. If

|A′
3| ⩾ 1, then

β(u∗) ⩽ |H0|+ 4 + 2|A′
3|+ s′3 + (|U0| − |A′

3|)|H0|
= (|U0|+ 1)|H0|+ (2− |H0|)|A′

3|+ s′3 + 4

⩽ |U0||H0|+ s′3 + 6 ⩽ |U0||H0|+ |U0|+ 6

⩽

⌊
(n− 2)2

4

⌋
+ 6 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction. Hence |A′
3| = 0. Together with Lemmas 1.4 and 1.7, we have

G∗ ∼= K⌈n−2
2 ⌉,⌊n−2

2 ⌋ ◦K3. Applying Lemmas 1.4 and 2.1 one has

λ∗ < λ(SK⌈n−1
2 ⌉,⌊n−1

2 ⌋) < λ(K⌈n−1
2 ⌉,⌊n−1

2 ⌋ •K3),

a contradiction to (3.1).
If |H0| = s′1, then s′2 = s′3 = 0. In view of Claims 3.1 and 3.3, we get |A′

2| = 0.
If |A′

3| ⩾ 1, then

β(u∗) ⩽ |H0|+ 4 + |A′
1|(|H0|+ 1) + 2|A′

3|+ (|U0| − |A′
1 ∪A′

3|)|H0|
= (|U0|+ 1)|H0|+ |A′

1|+ |A′
3|(2− |H0|) + 4

⩽ |U0||H0|+ |A′
1|+ 6 ⩽ |U0||H0|+ |U0|+ 6

⩽

⌊
(n− 2)2

4

⌋
+ 6 <

⌊
(n− 1)2

4

⌋
+ 1,

which also contradicts (3.7). Therefore, |A′
3| = 0. Together with Lemma 1.4,

we have G∗ ∼= Ka,b •K3 with a = |H0| + 1 and b = |U0| + 1. Without loss of
generality, assume that a ⩾ b. We claim a = ⌈n−1

2 ⌉ and b = ⌊n−1
2 ⌋. Otherwise,

β(u∗) = a+ 3 + a(b− 1) = ab+ 3

⩽

(⌈
n− 1

2

⌉
+ 1

)(⌊
n− 1

2

⌋
− 1

)
<

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction. Hence G∗ ∼= K⌈n−1
2 ⌉,⌊n−1

2 ⌋ •K3, as desired.

Case 4. n− 6 ⩽ |U0|+ |H0| ⩽ n− 4. Then N(u∗) \ V (H0) ̸= ∅. Otherwise,
N2(u∗) = U0. Hence

β(u∗) ⩽ |H0|+ |U0||H0| = (|U0|+ 1)|H0| ⩽
⌊
(n− 3)2

4

⌋
<

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction to (3.7).
Let H be a nontrivial component of G∗[N(u∗)]. In view of (3.6), one has

H ∈ {P2,K1,2,K1,3, P4, C3, C4, C4 + e,K4,K1,3 + e}.

If H ∈ {K1,2,K1,3}, then n− 5 ⩽ |U0|+ |H0| ⩽ n− 1− |H| ⩽ n− 4 (based on
(3.6)) and so H is the unique nontrivial component of G∗[N(u∗)]. Note that
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each vertex in U0 is adjacent to at most one vertex in H and each vertex in
U(H) is adjacent to at most three vertices in H. Hence

β(u∗) ⩽ |H0|+ 4 + 6 + |U0||H0|+ |U0|+ 3(n− |U0| − |H0| − 4)

⩽

{
(|U0|+ 1)(|H0|+ 1) + 12, if |U0|+ |H0| = n− 5;

(|U0|+ 1)(|H0|+ 1) + 9, if |U0|+ |H0| = n− 4,

⩽


⌊
(n− 3)2

4

⌋
+ 12, if |U0|+ |H0| = n− 5;⌊

(n− 2)2

4

⌋
+ 9, if |U0|+ |H0| = n− 4,

<

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction.
If H ∈ {P4, C4, C4+ e,K4,K1,3+ e}, then in view of (3.6) one has that H is

the unique nontrivial component of G∗[N(u∗)] and |U0|+ |H0| ∈ {n−6, n−5}.
Notice that U0 ∩U(H) = ∅ and each vertex in U(H) is adjacent to exactly one
vertex in H. It follows that

β(u∗) ⩽ |H0|+ 4 + 2|E(H)|+ |U0||H0|+ (n− |U0| − |H0| − 5)

⩽


⌊
(n− 5)2

4

⌋
+ 17, if |U0|+ |H0| = n− 6;⌊

(n− 4)2

4

⌋
+ 16, if |U0|+ |H0| = n− 5,

<

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction.
If H ∼= C3 and H is the unique nontrivial component of G∗[N(u∗)], then

U0 ∩ U(H) = ∅ and by (3.6) one has |U0|+ |H0| ∈ [n− 6, n− 4]. Therefore,

β(u∗) ⩽ |H0|+ 3 + 6 + |U0||H0|+ 3(n− |U0| − |H0| − 4)

⩽



⌊
(n− 5)2

4

⌋
+ 15, if |U0|+ |H0| = n− 6;⌊

(n− 4)2

4

⌋
+ 12, if |U0|+ |H0| = n− 5;⌊

(n− 3)2

4

⌋
+ 9, if |U0|+ |H0| = n− 4,

<

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction.
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Together with the discussion above, we know that G∗[N(u∗)] − H0 ∈ {P2,
2P2, P2 ∪ C3}. We proceed by distinguishing the following three subcases.

Subcase 4.1. |U0| + |H0| = n − 4. In this subcase, G∗[N(u∗)] −H0
∼= P2.

By a similar discussion as Case 3, we can get a contradiction. The detailed
proof is given in the Appendix.

Subcase 4.2. |U0|+ |H0| = n− 5. Notice that each vertex in U0 is adjacent
to at most two vertices in N(u∗) \ V (H0). Hence

β(u∗) ⩽ |H0|+ 4 + 4 + |U0|(|H0|+ 2) = (|U0|+ 1)(|H0|+ 2) + 6

⩽

⌊
(n− 2)2

4

⌋
+ 6 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction.
Subcase 4.3. |U0|+ |H0| = n−6. In view of (3.6), we know that G∗[N(u∗)]

contains C3 as a component. Then G∗[N(u∗)] −H0
∼= P2 ∪ C3 and V (G∗) =

N [u∗] ∪ U0. Hence each vertex in U0 is adjacent to at most two vertices in
N(u∗) \ V (H0). Therefore,

β(u∗) ⩽ |H0|+ 5 + 8 + |U0|(|H0|+ 2) = (|U0|+ 1)(|H0|+ 2) + 11

⩽

⌊
(n− 3)2

4

⌋
+ 11 <

⌊
(n− 1)2

4

⌋
+ 1,

which also contradicts (3.7).
This completes the proof. □

We close this section by giving the proof of Theorem 1.3, which determines
the maximum possible size of a θ(1, 2, 4)-free non-bipartite graph with given
order. Recall that Zhai, Fang and Shu [38] established the following result.

Theorem 3.4 ([38]). Let q, r ⩾ 2 be two integers such that qr is even. Let
k = q + r and n ⩾ 9k2 − 3k. Then

ex(n, θ(1, q, r)) =

⌊
n2

4

⌋
.

The only extremal graph is K⌈n
2 ⌉,⌊n

2 ⌋.

In fact, if we put p = 2 and q = 4, then by the proof of Theorem 3.4, we
may get a result as follows.

Corollary 3.5. Let n ⩾ 132 be an integer. Then

ex(n, θ(1, 2, 4)) =

⌊
n2

4

⌋
.

The only extremal graph is K⌈n
2 ⌉,⌊n

2 ⌋.

Now, we are ready to give the proof of Theorem 1.3.
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Proof of Theorem 1.3. Let G∗ be an n-vertex θ(1, 2, 4)-free non-bipartite graph
having the largest number of edges. Notice thatK⌈n−1

2 ⌉,⌊n−1
2 ⌋•K3 is a θ(1, 2, 4)-

free non-bipartite graph with order n. Hence

|E(G∗)| ⩾ |E(K⌈n−1
2 ⌉,⌊n−1

2 ⌋ •K3)| ⩾
⌊
(n− 1)2

4

⌋
+ 2.

If G∗ is also θ(1, 2, 3)-free, then by Lemma 1.10, one has |E(G∗)| ⩽ ⌊ (n−1)2

4 ⌋+
1 < ⌊ (n−1)2

4 ⌋+ 2, a contradiction. Hence G∗ contains θ(1, 2, 3) as a subgraph.
Let H ∼= θ(1, 2, 3) be a subgraph of G∗ with V (H) = {v1, v2, v3, v4, v5} and

E(H) = {vivi+1 : 1 ⩽ i ⩽ 5} ∪ {v1v3}, taking subscripts modulo 5. Since G∗

is θ(1, 2, 4)-free, one has that each vertex in V (G∗) \ V (H) has at most two
neighbors in V (H). Let G′ = G∗ − V (H). Notice that G′ is also θ(1, 2, 4)-free

and |V (G′)| ⩾ 132. By Corollary 3.5, one has |E(G′)| ⩽ ⌊ (n−5)2

4 ⌋. Hence

|E(G∗)| = |E(G′)|+ e(V (H), V (G′)) + |E(H)|

⩽

⌊
(n− 5)2

4

⌋
+ 2(n− 5) + 6 =

⌊
(n− 1)2

4

⌋
+ 2.(3.10)

In what follows, we prove the second part of Theorem 1.3. The necessity
part is obvious, so we only give the proof of the sufficiency part.

Sufficiency. Assume that the equality in (3.10) holds. Then |E(G′)| =

⌊ (n−5)2

4 ⌋ and each vertex in G′ has exactly two neighbors in H. In view of
Corollary 3.5, one has G′ ∼= K⌈n−5

2 ⌉,⌊n−5
2 ⌋.

For 1 ⩽ i, j ⩽ 5, denote

Ui,j = {w ∈ V (G∗) \ V (H) : N(w) ∩ V (H) = {vi, vj}}.
Without loss of generality, assume that |U1,4| ⩾ |U3,5|. Based on G∗ is θ(1, 2, 4)-
free, one has the following assertions.

(i) Ui,j ̸= ∅ only if (i, j) ∈ {(1, 3), (1, 4), (3, 5)};
(ii) e(U1,3, U1,4 ∪ U3,5) = 0;
(iii) For all i, j ∈ {1, 2, 3, 4, 5}, Ui,j is an independent set of G∗.

Then (i) implies V (G′) = U1,3 ∪ U1,4 ∪ U3,5. Together with G′ ∼= K⌈n−5
2 ⌉,⌊n−5

2 ⌋
and (ii)-(iii), we have U1,3 = ∅. Moreover, (iii) also implies that |U1,4| = ⌈n−5

2 ⌉,
|U3,5| = ⌊n−5

2 ⌋ and each vertex in U1,4 is adjacent to all vertices in U3,5. It
follows that G∗ ∼= K⌈n−1

2 ⌉,⌊n−1
2 ⌋ •K3, as desired. □

4. Concluding remarks

In this paper, we first determine the unique graph among the set of θ(1, 2, 3)-
free non-bipartite graphs with order n ⩾ 20 having the maximum spectral
radius. Then we characterize the unique graph among the set of θ(1, 2, 4)-free
non-bipartite graphs with order n ⩾ 21 having the largest spectral radius. At
last we identify the unique graph among θ(1, 2, 4)-free non-bipartite graphs on
n ⩾ 137 vertices having the maximum number of edges. Unfortunately, all the
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problems considered in this paper are not completely solved for smaller order
n. Probably, with the help of computer we may solve them.

Recently, Zhai and Lin [40] showed that K⌈n
2 ⌉,⌊n

2 ⌋ is the unique graph among

the n-vertex θ(1, 2, r)-free graphs having the largest spectral radius for suffi-
ciently large n. Therefore, one sees the extremal graph is independent of the
parity of r for sufficiently large n. On the other hand, comparing Theorem 1.1
with Theorem 1.2 gives us that the graph among the n-vertex θ(1, 2, 3)-free
non-bipartite graphs having the largest spectral radius is not the same as that
among the n-vertex θ(1, 2, 4)-free non-bipartite having the largest spectral ra-
dius. So, it is more interesting and challenging to determine the θ(1, 2, k)-free
non-bipartite graphs having the largest spectral radius, k ⩾ 5. So we propose
the following problem.

Problem 1. How to characterize all the graphs among θ(1, 2, k)-free non-
bipartite graphs with given order having the largest spectral radius for k ⩾ 5?

One may wonder whether the method in this paper can be used to solve
Problem 1 or not. In fact, our idea for proving Theorems 1.1 and 1.2 is as
follows. Firstly, choose a non-bipartite graph G∗ such that its spectral radius
is as large as possible. Clearly, G∗ is connected and there is a Perron vector of
G∗, say x. Then let u∗ be a vertex of G∗ such that xu∗ = max{xv : v ∈ V (G∗)}.
The most important step is to analyze the structures of G∗[N(u∗)], G∗[N2(u∗)]
and E(N(u∗), N2(u∗)). To show this, we repeatedly use the property that G∗

does not contain θ(1, 2, 3) or θ(1, 2, 4) as a subgraph. In fact, when r is large, it
is hard to determine whether θ(1, 2, r) is a subgraph of G∗. So, it is necessary
to develop some other techniques to solve Problem 1.

Let θ(k) = {θ(1, i, j) : i+ j = k}. Notice that Lan, Shi and Song [19] studied
the planar Turán number of θ(k) for k ∈ {4, 5, 6}. It encourages us to consider
the spectral Turán type problem among the set of planar graphs as follows.

Problem 2. How to characterize all the graphs among θ(k)-free (resp. θ(1, 2,
k)-free) planar graphs with given order having the largest spectral radius for a
positive integer k?

We will develop the above study in the near future.

Appendix

The proof of Subcase 4.1. In this subcase, we know that P2 = w1w2 is the
unique nontrivial component of G∗[N(u∗)] and |V (G∗) \ (N [u∗]∪U0)| = 1. We
also find that |H0| ⩾ 3. Otherwise, we have

β(u∗) ⩽ |H0|+ 4 + |U0|(|H0|+ 2) + 2 = (|U0|+ 1)(|H0|+ 2) + 4

⩽ 4(n− 6) + 8 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction.
Next we show the following claim.
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Claim 4.1. e(U0) = 0.

Proof of Claim 4.1. Suppose that e(U0) ⩾ 1 and let uv be an edge in G∗[U0].
Define

Bi = {w ∈ U0 \ {u, v} : N(w) ∩ {w1, w2} = {wi}} for i ∈ {1, 2}
and

B3 = {w ∈ U0 \ {u, v} : N(w) ∩ {w1, w2} = {w1, w2}}.
Denote ti = |{u : u ∈ N(B1) ∩ V (H0)}| for i ∈ {1, 2, 3} and assume t1 ⩾ t2. If
|B1 ∪B2 ∪B3| = 0, then by (3.8), one has

β(u∗) ⩽ |H0|+ 4 + (|U0| − 2)|H0|+ |H0|+ 3 + 2 = |U0||H0|+ 9

⩽

⌊
(n− 4)2

4

⌋
+ 9 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction to (3.7). Thus, |B1 ∪ B2 ∪ B3| ⩾ 1. Therefore, together with
(3.8) one has

β(u∗) ⩽ |H0|+ 4 +

2∑
i=1

|Bi|(ti + 1) + 2|B3|+ t3

+ (|U0| − |B1 ∪B2 ∪B3| − 2)|H0|+ |H0|+ 3 + 2

⩽ (|B1 ∪B2 ∪B3| − 1)(t1 + 1) + |B3|
+ (|U0| − |B1 ∪B2 ∪B3|+ 1)|H0|+ 10

⩽ |U0||H0| − (|B1 ∪B2 ∪B3| − 1)(|H0| − t1 − 1) + |B3|+ 10

⩽ |U0||H0|+ (|B1 ∪B2 ∪B3| − 1) + |B3|+ 10

⩽ |U0||H0|+ 2|U0|+ 9

⩽

⌊
(n− 2)2

4

⌋
+ 9 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction. It follows that e(U0) = 0. □

Together with Claim 4.1 and the fact that G∗ is θ(1, 2, 4)-free, one has
e(N2(u∗)) = 0. Let

B′
i = {w ∈ U0 : N(w) ∩ {w1, w2} = {wi}} for i ∈ {1, 2}

and
B′

3 = {w ∈ U0 : N(w) ∩ {w1, w2} = {w1, w2}}.
Denote t′i = |{u : u ∈ N(B′

1)∩V (H0)}| for i ∈ {1, 2, 3} and assume t′1 ⩾ t′2. By
a similar discussion as above, one has |B′

1 ∪B′
2 ∪B′

3| ⩾ 1. If t′1 ⩾ 1, then

β(u∗) ⩽ |H0|+ 4 +

2∑
i=1

|B′
i|(t′i + 1) + 2|B′

3|+ t′3

+ (|U0| − |B′
1 ∪B′

2 ∪B′
3|)|H0|+ 2

⩽ (|U0|+ 1)|H0| − (|B′
1 ∪B′

2 ∪B′
3| − 1)(|H0| − t′1 − 1) + 7
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⩽ (|U0|+ 1)|H0|+ (|B′
1 ∪B′

2 ∪B′
3| − 1) + 7

⩽ (|U0|+ 1)(|H0|+ 1) + 6

⩽

⌊
(n− 2)2

4

⌋
+ 6 <

⌊
(n− 1)2

4

⌋
+ 1,

a contradiction. Therefore, t′1 = 0 and so t′2 = 0. Together with Claim 3.1 and
e(N2(u∗)) = 0, one has |B′

1| = |B′
2| = 0. Recall that |H0| ⩾ 3. Thus,

β(u∗) ⩽ |H0|+ 4 + 2|B′
3|+ t′3 + (|U0| − |B′

3|)|H0|+ 2

⩽ (|U0|+ 1)|H0|+ |B′
3|(2− |H0|) + t′3 + 6

⩽ (|U0|+ 1)|H0|+ t′3 + 6

⩽ (|U0|+ 1)(|H0|+ 1) + 5

⩽

⌊
(n− 2)2

4

⌋
+ 5 <

⌊
(n− 1)2

4

⌋
+ 1,

which is also a contradiction. □
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[11] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar.

1 (1966), 51–57.
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