• Title/Summary/Keyword: special polynomials

Search Result 95, Processing Time 0.026 seconds

TWO VARIABLE HIGHER-ORDER FUBINI POLYNOMIALS

  • Kim, Dae San;Kim, Taekyun;Kwon, Hyuck-In;Park, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.975-986
    • /
    • 2018
  • Some new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomilas were introduced recently by Kilar and Simsek ([5]) and we study the two variable Fubini polynomials as Appell polynomials whose coefficients are the Fubini polynomials. In this paper, we would like to utilize umbral calculus in order to study two variable higher-order Fubini polynomials. We derive some of their properties, explicit expressions and recurrence relations. In addition, we express the two variable higher-order Fubini polynomials in terms of some families of special polynomials and vice versa.

LIE ALGEBRA AND OPERATIONAL TECHNIQUES ON THREE-VARIABLE HERMITE POLYNOMIALS

  • Shahwan, M.J.S.;Bin-Saad, Maged G.
    • The Pure and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • The present paper aims at harnessing the technique of Lie Algebra and operational methods to derive and interpret generating relations for the three-variable Hermite Polynomials $H_n$(x, y, z) introduced recently in [2]. Certain generating relations for the polynomials related to $H_n$(x, y, z) are also obtained as special cases.

Flexural-Torsional Coupled Vibration of Slewing Beams Using Various Types of Orthogonal Polynomials

  • Kapania Rakesh K.;Kim, Yong-Yook
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1790-1800
    • /
    • 2006
  • Dynamic behavior of flexural-torsional coupled vibration of rotating beams using the Rayleigh-Ritz method with orthogonal polynomials as basis functions is studied. Performance of various orthogonal polynomials is compared to each other in terms of their efficiency and accuracy in determining the required natural frequencies. Orthogonal polynomials and functions studied in the present work are: Legendre, Chebyshev, integrated Legendre, modified Duncan polynomials, the special trigonometric functions used in conjunction with Hermite cubics, and beam characteristic orthogonal polynomials. A total of 5 cases of beam boundary conditions and rotation are studied for their natural frequencies. The obtained natural frequencies and mode shapes are compared to those available in various references and the results for coupled flexural-torsional vibrations are especially compared to both previously available references and with those obtained using NASTRAN finite element package. Among all the examined orthogonal functions, Legendre orthogonal polynomials are the most efficient in overall CPU time, mainly because of ease in performing the integration required for determining the stiffness and mass matrices.

A NOTE ON q-ANALOGUE OF POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • Hwang, Kyung Won;Nam, Bo Ryeong;Jung, Nam-Soon
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.611-621
    • /
    • 2017
  • In this paper, we define a q-analogue of the poly-Bernoulli numbers and polynomials which is generalization of the poly Bernoulli numbers and polynomials including q-polylogarithm function. We also give the relations between generalized poly-Bernoulli polynomials. We derive some relations that are connected with the Stirling numbers of second kind. By using special functions, we investigate some symmetric identities involving q-poly-Bernoulli polynomials.

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.

THE n-TH TWISTED CHANGHEE POLYNOMIALS AND NUMBERS

  • Rim, Seog-Hoon;Park, Jin-Woo;Pyo, Sung-Soo;Kwon, Jongkyum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.741-749
    • /
    • 2015
  • The Changhee polynomials and numbers are introduced in [6]. Some interesting identities and properties of those polynomials are derived from umbral calculus (see [6]). In this paper, we consider Witt-type formula for the n-th twisted Changhee numbers and polynomials and derive some new interesting identities and properties of those polynomials and numbers from the Witt-type formula which are related to special polynomials.

An Special-Day Load Forecasting Using Neural Networks (신경회로망을 이용한 특수일 부하예측)

  • 고희석;김주찬
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.53-59
    • /
    • 2004
  • In case of load forcasting the most important problem is to deal with the load of special days. According this paper presents forecasting method for speaial days peak load by neural networks model. by means of neural networks mothod using the historical past special- days load data, special-days load was directly forecasted, and forecasting % error showed good result as 1∼2% except vacation season in summer Consequently, it is capable of directly special days load, With the models, precision of forecasting was brought satisfactory result. When neural networks was compared with the orthogonal polynomials models at a view of the results of special-days load forecasting, neural networks model which used pattern conversion ratio was more effective on forecasting for special-days load. On the other hand, in case of short special-days load forecasting, both were valid.

  • PDF

THE NORM RATIO OF THE POLYNOMIALS WITH COEFFICIENTS AS BINARY SEQUENCE

  • Taghavi, M.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.195-200
    • /
    • 2003
  • Given a positive integer q, the ratio of the 2q-norm of a polynomial which its coefficients form a binary sequence and its 2-norm arose from telecommunication engineering consists of finding any type of such polynomials haying the ratio “small” In this paper we consider some special types of these polynomials, discuss the sharpest possible upper bound, and prove a result for the ratio.

LOCATING ROOTS OF A CERTAIN CLASS OF POLYNOMIALS

  • Argyros, Ioannis K.;Hilout, Said
    • East Asian mathematical journal
    • /
    • v.26 no.3
    • /
    • pp.351-363
    • /
    • 2010
  • We introduce a special class of real recurrent polynomials $f_m$$($m{\geq}1$) of degree m+1, with positive roots $s_m$, which are decreasing as m increases. The first root $s_1$, as well as the last one denoted by $s_{\infty}$ are expressed in closed form, and enclose all $s_m$ (m > 1). This technique is also used to find weaker than before [6] sufficient convergence conditions for some popular iterative processes converging to solutions of equations.