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A NOTE ON q-ANALOGUE OF POLY-BERNOULLI NUMBERS

AND POLYNOMIALS†

K.W. HWANG, B.R. NAM, N.S. JUNG∗

Abstract. In this paper, we define a q-analogue of the poly-Bernoulli
numbers and polynomials which is generalization of the poly Bernoulli num-
bers and polynomials including q-polylogarithm function. We also give the

relations between generalized poly-Bernoulli polynomials. We derive some
relations that are connected with the Stirling numbers of second kind. By
using special functions, we investigate some symmetric identities involving
q-poly-Bernoulli polynomials.
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1. Introduction

Many mathematicians are interested in the Bernoulli numbers and polynomi-
als, Euler numbers and polynomials, Genocchi numbers and polynomials, tan-
gent numbers and polynomials and their applications. They possess many in-
teresting properties and are treated in many areas of mathematics and physics.
Due to these reasons, many applications of Bernoulli numbers and polynomials,
Euler numbers and polynomials, Genocchi numbers and polynomials, tangent
numbers and polynomials have been studied, and recently various analogues for
the above numbers and polynomials was introduced(see [1-14]).

In this paper, we use the following notations. N = {1, 2, 3, . . . } denotes the
set of natural numbers, N0 = {0, 1, 2, . . . } denotes the set of nonnegative inte-
ger, Z denotes the set of integers, and C denotes the set of complex numbers,
respectively.
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The ordinary Bernoulli polynomials Bn(x) are given by the generating func-
tions:

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
(see[1, 2, 6]). (1.1)

When x = 0, B
(k)
n,q = B

(k)
n,q(0) are called poly-Bernoulli numbers.

The polylogarithm function Lik is defined by

Lik(x) =
∞∑
n=1

xn

nk
, (k ∈ Z)(see[1, 2, 3, 6, 7, 8, 14]) (1.2)

For k ≤ 1, the polylogarithm functions are as follows

Li1(x) = −log(1− x), Li0(x) =
x

1− x
, Li−1(x) =

x

(1− x)
2 , · · · .

By using polylogarithm function, Kaneko defined a sequence of rational num-
bers, which is refered to as poly-Bernoulli numbers,

In [3] and [13], the k-th q-analogue of polylogarithm function Lik,q is intro-
duced by

Lik,q(x) =
∞∑
n=1

xn

[n]kq
, (k ∈ Z). (1.3)

The q-analogue of polylogarithm function for k ≤ 1 is represented by a rational
function,

Lik,q(x) =
1

(1− q)k

k∑
l=0

(−1)l
(
k

l

)
qlx

1− qlx
.

In [4] and [12], the Stirling number of the first kind is given by

(x)n =
n∑

m=0

S1(n,m)xm, (n ≥ 0)

and
∞∑
n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!

where

(x)n = x(x− 1)(x− 2) · · · (x− n+ 1) = Πnk=1(x− (k − 1)) (1.4)

is falling factorial. The Stirling numbers of the second kind is defined by

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
. (1.5)

In this paper, we consider a q-analogue of the poly Bernoulli polynomials
containing Equation(1.3). We also find some relations between q-poly-Bernoulli
polynomials and ordinary Bernoulli polynomials. And we derive several proper-
ties that are connected with the Stirling numbers of the second kind. Finally, we
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find some symmetric identities of the q-degenerate poly Bernoulli polynomials
by using special functions.

2. A q-analogue of the poly-Bernoulli polynomials

In this section, we define a q-analogue of poly-Bernoulli numbers B
(k)
n,q and

polynomials B
(k)
n,q(x) by the generating functions. From the definition, we get

some identities that is similar to the ordinary Bernoulli polynomials.

Definition 2.1. For n ≥ 0, n, k ∈ Z, 0 ≤ p < 1, we introduce a q-analogue of
poly-Bernoulli polynomials by:

Lik,q(1− e−t)

et − 1
ext =

∞∑
n=0

B(k)
n,q(x)

tn

n!
(2.1)

where

Lik,q(t) =

∞∑
n=0

tn

[n]kq

is the k-th q-polylogarithm function.

When x = 0, B
(k)
n,q = B

(k)
n,q(0) are called a q-analogue of poly-Bernoulli numbers.

Note that limq→1[n]q = n, and limq→1B
(k)
n,q(x) = B

(k)
n (x).

From Equation(2.1), we have the following relation between q-poly-Bernoulli
numbers and q-poly-polynomials.

Theorem 2.2. Let n ≥ 0, n, k ∈ Z, 0 < p < 1. We have

B(k)
n,q(x) =

n∑
l=0

(
n

l

)
B

(k)
l,q x

n−l. (2.2)

Proof. For n ≥ 0, n, k ∈ Z, 0 < p < 1, we easily get:
∞∑
n=0

B(k)
n,q(x)

tn

n!
=
Lik,q(1− e−t)

et − 1
ext

=
∞∑
n=0

(
n∑
l=0

(
n

l

)
B

(k)
l,q x

n−l

)
tn

n!
.

Therefore, we have

B(k)
n,q(x) =

n∑
l=0

(
n

l

)
B

(k)
l,q x

n−l.

�
By Equation(2.2), we obtain an addition theorem.

Theorem 2.3. For n ≥ 0, n, k ∈ Z, 0 < p < 1, we have

B(k)
n,q(x+ y) =

n∑
l=0

(
n

l

)
B

(k)
l,q (x)y

n−l.
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Proof. Let n ≥ 0, n, k ∈ Z. Then we obtain
∞∑
n=0

B(k)
n,q(x+ y)

tn

n!
=
Lik,q(1− e−t)

et − 1
e(x+y)t

=
∞∑
n=0

(
n∑
l=0

(
n

l

)
B

(k)
l,q (x)y

n−l

)
tn

n!
.

Thus, we get

B(k)
n,q(x+ y) =

n∑
l=0

(
n

l

)
B

(k)
l,q (x)y

n−l.

�

By using the definition of the q-analogue of polylogarithm function Lik,q
in Equation(1.3), we have next relation which is connected with the ordinary
Bernoulli polynomials.

Theorem 2.4. Let n ≥ 0, n, k ∈ Z, 0 ≤ p < 1. We obtain

B(k)
n,q(x) =

∞∑
l=0

1

[l + 1]kq

l+1∑
a=0

(
l + 1

a

)
(−1)aBn(x− a).

Proof. For n ≥ 0, n, k ∈ Z, 0 ≤ p < 1,

Lik,q(1− e−t)

et − 1
ext =

∞∑
l=1

(1− e−t)l

[l]kq

ext

et − 1

=
∞∑
n=0

1

[l + 1]kq

l+1∑
a=0

(
l + 1

a

)
(−1)a

e(x−a)t

et − 1

=

∞∑
n=0

( ∞∑
l=0

1

[l + 1]kq

l+1∑
a=0

(
l + 1

a

)
(−1)a

Bn+1(x− a)

n+ 1

)
tn

n!

Comparing the coefficient of the result, we easily get next equation:

B(k)
n,q(x) =

∞∑
l=0

1

[l + 1]kq

l+1∑
a=0

(
l + 1

a

)
(−1)a

Bn+1(x− a)

n+ 1
.

�

From the binomials series and the Equation(1.3), we derive the following
Theorem.

Theorem 2.5. If n, k ∈ Z, n ≥ 0and 0 ≤ p < 1, then we have

B(k)
n,q(x) =

∞∑
l=0

l∑
m=0

m+1∑
a=0

(
m+ 1

a

)
(−1)a(l −m− a+ x)n

[m+ 1]nq
.
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Proof. Let n, k ∈ Z, n ≥ 0 and 0 ≤ p < 1. Using the Equation(1.3), we have

Lik,q(1− e−t)

et − 1
ext =

( ∞∑
m=0

emt

)( ∞∑
l=0

(1− e−t)l+1

[l + 1]kq

)
ext

=

( ∞∑
l=0

l∑
m=0

e(l−m)t

[m+ 1]kq

)(
m+1∑
a=0

(
m+ 1

a

)
(−1)ae(x−a)t

)

=

∞∑
l=0

l∑
m=0

m+1∑
a=0

(
m+ 1

a

)
(−1)ae(l−m−a+x)t

[m+ 1]kq

=
∞∑
n=0

∞∑
l=0

l∑
m=0

m+1∑
a=0

(
m+ 1

a

)
(−1)a(l −m− a+ x)n

[m+ 1]kq

tn

n!

Hence, we have

B(k)
n,q(x) =

∞∑
l=0

l∑
m=0

m+1∑
a=0

(
m+ 1

a

)
(−1)a(l −m− a+ x)n

[m+ 1]nq
.

�

3. Some relation involving the Stirling numbers of the second kind

In this section, using well-known Stirling numbers, we find several identities of
the q-poly-Bernoulli polynomials. Note that the Stirling numbers of the second
kind is defined

(et − 1)m

m!
=

∞∑
n=m

S2(n,m)
tn

n!
(see[4, 12, 13, 14]). (3.1)

The q-analogue of polylogarithm function Lik,q, in the Equation(1.3), is repre-
sented as below

Lik,q(1− e−t) =
∞∑
l=1

(1− e−t)l

[l]kq

=

∞∑
n=1

(−1)l
(e−t − 1)l

[l]kq

=
∞∑
n=1

n∑
l=1

(−1)l+n

[l]kq
l!S2(n, l)

tn

n!

Therefore, we obtain

1

t
Lik,q(1− e−t) =

∞∑
n=0

n+1∑
l=1

(−1)l+n+1

[l]kq
l!
S2(n+ 1, l)

n+ 1

tn

n!
. (3.2)

Using the Equation(3.2), we get next theorem.
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Theorem 3.1. For n, k ∈ Z, n ≥ 0, we have

B(k)
n,q(x) =

n∑
a=0

(
n

a

) a+1∑
l=1

(−1)l+a+1l!S2(a+ 1, l)

[l]kq (a+ 1)
Bn−a(x).

Proof. Let n, k ∈ Z, n ≥ 0. By the recomposition of q-polylogarithm function
in Equation(3.2), the relation between the q-poly-Bernoulli polynomials and the
ordinary Bernoulli polynomials is derived:

∞∑
n=0

B(k)
n,q(x)

tn

n!
=
Lik,q(1− e−t)

et − 1
ext

=

∞∑
n=0

(
n+1∑
l=1

(−1)l+n+1

[l]kq
l!
S2(n+ 1, l)

n+ 1

)
tn

n!

∞∑
n=0

Bn(x)
tn

n!

=
∞∑
n=0

n∑
a=0

(
n

a

) a+1∑
l=1

(−1)l+a+1l!S2(a+ 1, l)

[l]kq (a+ 1)
Bn−a(x)

tn

n!
.

Thus, we have

B(k)
n,q(x) =

n∑
a=0

(
n

a

) a+1∑
l=1

(−1)l+a+1l!S2(a+ 1, l)

[l]kq (a+ 1)
Bn−a(x).

�

By the Equation(3.2), we have the following result which is connected with
q-poly-Bernoulli numbers.

Theorem 3.2. For n ≥ 0, n, k ∈ Z, we have

B(k)
n,q(x) =

∞∑
l=0

n∑
a=l

(
n

a

)
(x)lS2(a, l)B

(k)
n−a,q.

Proof. Let n ≥ 0, n, k ∈ Z. We obtain a relation between q-poly-Bernoulli num-
bers and q-poly-Bernoulli polynomials by the Equation(3.1):

∞∑
n=0

B(k)
n,q(x)

tn

n!
=
Lik,q(1− e−t)

et − 1
ext

=
Lik,q(1− e−t)

et − 1

∞∑
l=0

(x)l
(et − 1)l

l!

=
∞∑
n=0

B(k)
n,q

tn

n!

∞∑
l=0

(x)l

∞∑
a=0

S2(a, l)
tn

n!

=
∞∑
n=0

( ∞∑
l=0

n∑
a=l

(
n

a

)
(x)lS2(a, l)B

(k)
n−a,q

)
tn

n!
.
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Thus, we have

B(k)
n,q(x) =

∞∑
l=0

n∑
a=l

(
n

a

)
(x)lS2(a, l)B

(k)
n−a,q.

where (x)l = x(x− 1)(x− 2) · · · (x− l + 1) is falling factorial. �
From Definition 2.1, we have the recurrence formula with the Stirling numbers

of the second kind.

Theorem 3.3. For n ≥ 1, n, k ∈ Z. and 0 < p < 1, we get

B(k)
n,q(x+ 1)−B(k)

n,q(x)

=
n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)l+1+r

[l + 1]kq
(l + 1)!S2(r, l + 1)

)
xn−r.

Proof. Let n ≥ 0, n, k ∈ Z, 0 < p < 1. Using the definition of the q-poly-Bernoulli
polynomials, we have a equation as follows:

∞∑
n=0

B(k)
n,q(x+ 1)

tn

n!
−

∞∑
n=0

B(k)
n,q(x)

tn

n!

=
Lik,q(1− e−t)

et − 1
e(x+1)t − Lik,q(1− e−t)

et − 1
ext

=

∞∑
n=0

n−1∑
l=0

(−1)n+l+1

[l + 1]kq
(l + 1)!S2(n, l + 1)

tn

n!

∞∑
m=0

xm
tm

m!

=
∞∑
n=0

n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)r+l+1

[l + 1]kq
(l + 1)!S2(r, l + 1)

)
xn−r

tn

n!
.

Therefore, the equation is appeared by

B(k)
n,q(x+ 1)−B(k)

n,q(x)

=

n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)r+l+1

[l + 1]kq
(l + 1)!S2(r, l + 1)

)
xn−r.

�
In [4], Carlitz defined the weighted Stirling numbers of the second kind as

follows
(et − 1)m

m!
ext =

∞∑
n=m

S2(n,m, x)
tn

n!
. (3.3)

By using the Equation(3.3), we get the next result.

Theorem 3.4. For n ≥ 1, k ∈ Z, 0 < p < 1, we have

B(k)
n,q(x) =

n∑
m=0

(−1)m+nm!

[m+ 1]kq
S2(n,m, x).
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Proof. Let n ≥ 1, k ∈ Z, 0 < p < 1.

Lik,q(1− e−t)

et − 1
ext =

∞∑
m=0

(1− e−t)m

[m+ 1]kq
ext

=
∞∑
n=0

(−1)m+nm!

[m+ 1]kq

∞∑
n=m

S2(n,m, x)
tn

n!

=

∞∑
n=0

(
n∑

m=0

(−1)m+nm!

[m+ 1]kq
S2(n,m, x)

)
tn

n!
.

Therefore, the formula is expressed as below:

B(k)
n,q(x) =

n∑
m=0

(−1)m+nm!

[m+ 1]kq
S2(n,m, x)

�

4. Symmetric identities for the q-analogue of the poly-Bernoulli
polynomials

In this section, we investigate several symmetric identities for the q-poly-
Bernoulli polynomials by given special functions.

Theorem 4.1. For n ≥ 0, n, k ∈ Z, a, b > 0(a ̸= b), the following identity is
obtained:

n∑
m=0

(
n

m

)
an−mbmB(k)

m,q(ax)B
(k)
n−m,q(bx)

=
n∑

m=0

(
n

m

)
ambn−mB

(k)
n−m,q(ax)B

(k)
m,q(bx).

Proof. Let n, k ∈ Z, n ≥ 0 and a, b > 0(a ̸= b). If we start with the function,

F (t) =
Lik,q(1− e−at)Lik,q(1− e−bt)

(eat − 1)(ebt − 1)
e2abxt, (4.1)

then the Equation(4.1) is written by

F (t) =
∞∑
n=0

B(k)
n,q(bx)

(at)n

n!

∞∑
m=0

B(k)
m,q(ax)

(bt)m

m!

=
∞∑
n=0

n∑
m=0

(
n

m

)
an−mbmB(k)

m,q(ax)B
(k)
n−m,q(bx)

tn

n!
.

(4.2)

In similarly, we can see that

F (t) =
∞∑
n=0

n∑
m=0

(
n

m

)
ambn−mB

(k)
n−m,q(ax)B

(k)
m,q(bx)

tn

n!
. (4.3)

From Equation(4.2) and (4.3), it is clear to Theorem 4.1. �
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By substituting b = 1, we easily get next corollary.

Corollary 4.2. For a > 0 anf n ≥ 0, n ∈ Z, we have

n∑
m=0

(
n

m

)
an−mB(k)

m,q(ax)B
(k)
n−m,q(x) =

n∑
m=0

(
n

m

)
amB

(k)
n−m,q(ax)B

(k)
m,q(x).

Note that Sm(a) =
∑a
k=0 k

m is a power sum polynomials(cf [15]). We consider
the following exponential generating function with indeterminate t,

e(a+1)t − 1

et − 1
=

∞∑
m=0

Sm(a)
tm

m!
. (4.4)

Using the generating function, we get a symmetric relation of the q-poly-Bernoulli
polynomials.

Theorem 4.3. For n ∈ Z, n ≥ 0, a, b > 0 and a ̸= b, we have

n∑
m=0

(
n

m

)
an−mbm−1Bm(ax)Sn−m(b− 1)

=
n∑

m=0

(
n

m

)
am−1bn−mBm(bx)Sn−m(a− 1)

Proof. Let n ∈ Z, n ≥ 0, a, b > 0 and a ̸= b.
We consider the generating function:

F (t) =
Lik,q(1− e−at)Lik,q(1− e−bt)(eabt − 1)(eabxt)t

(eat − 1)
2
(ebt − 1)

2 . (4.5)

The Equation(4.5) follows as below

F (t) =
Lik,q(1− e−at)Lik,q(1− e−bt)(eabt − 1)(eabxt)t

(eat − 1)
2
(ebt − 1)

2

=
∞∑
n=0

B(k)
n,q

(at)
n

n!

∞∑
n=0

B(k)
n,q

(bt)
n

n!

∞∑
m=0

Sm(b− 1)
(at)m

m!
b−1

∞∑
n=0

Bn(ax)
(bt)n

n!

=
∞∑
n=0

B(k)
n,q

(at)
n

n!

∞∑
n=0

B(k)
n,q

(bt)
n

n!

∞∑
n=0

n∑
m=0

(
n

m

)
an−mbm−1Bm(ax)Sn−m(b− 1)

tn

n!
.

In similar method, the Equation(4.5) is written by

F (t) =
∞∑
n=0

B(k)
n,q

(at)
n

n!

∞∑
n=0

B(k)
n,q

(bt)
n

n!

∞∑
m=0

Sm(a− 1)
(bt)m

m!
a−1

∞∑
n=0

Bn(bx)
(at)n

n!

=

∞∑
n=0

B(k)
n,q

(at)
n

n!

∞∑
n=0

B(k)
n,q

(bt)
n

n!

∞∑
n=0

n∑
m=0

(
n

m

)
am−1bn−mBm(bx)Sn−m(a− 1)

tn

n!
.
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Now, comparing the coefficient of tn, then it gives the symmetric identity,
n∑

m=0

(
n

m

)
an−mbm−1Bm(ax)Sn−m(b− 1) =

n∑
m=0

(
n

m

)
am−1bn−mBm(bx)Sn−m(a− 1).

�

Theorem 4.4. For n ∈ Z, n ≥ 0, a, b > 0 (a ̸= b), we have

Lik,q(1− e−bt)
n∑

m=0

(
n

m

)
ambn−mB(k)

m,q(bx)Sn−m(a− 1)

= Lik,q(1− e−at)

n∑
m=0

(
n

m

)
an−mbmB(k)

m,q(ax)Sn−m(b− 1)

Proof. Let n ∈ Z, n ≥ 0, a, b > 0 and a ̸= b.
We consider a function that is given below:

F (t) =
Lik,q(1− e−at)Lik,q(1− e−bt)(eabt − 1)(eabxt)

(eat − 1)(ebt − 1)
. (4.6)

The Equation(4.6) follows:

F (t) =
Lik,q(1− e−at)Lik,q(1− e−bt)(eabt − 1)(eabxt)

(eat − 1)(ebt − 1)

= Lik,q(1− e−bt)
∞∑
n=0

B(k)
n,q(bx)

(at)
n

n!

∞∑
m=0

Sn(a− 1)
(bt)n

n!

=

∞∑
n=0

Lik,q(1− e−bt)

n∑
m=0

(
n

m

)
ambn−mB(k)

m,q(bx)Sn−m(a− 1)
tn

n!
.

In similar method, we have

F (t) = Lik,q(1− e−at)
∞∑
n=0

B(k)
n,q(ax)

(bt)
n

n!

∞∑
n=0

Sn(b− 1)
(at)n

n!

=
∞∑
n=0

Lik,q(1− e−at)
n∑

m=0

(
n

m

)
an−mbmB(k)

m,q(ax)Sn−m(b− 1)
tn

n!
.

Now, comparing the coefficient of tn, then it gives the symmetric identity,

Lik,q(1− e−bt)
n∑

m=0

(
n

m

)
ambn−mB(k)

m,q(bx)Sn−m(a− 1)

= Lik,q(1− e−at)
n∑

m=0

(
n

m

)
an−mbmB(k)

m,q(ax)Sn−m(b− 1).

�
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