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Abstract. We consider Witt-type formula for the extension of Changchee and Daehee

numbers and polynomials. We derive some identities and properties of those numbers and

polynomials which are related to special polynomials.

1. Introduction

Throughout this paper, we denote the rings of p-adic integers by Zp, the fields
of p-adic numbers by Qp, and the completion of algebraic closure of Qp by Cp.
The p-adic norm | · |p is normalized by |p|p = 1

p . Let q b an inderteminate in

Cp with |1 − q|p < p
1

p−1 . Let UD[Zp] be the space of uniformly differentiable
functions on Zp. The following q-Haar measure is defined by Kim in [5, 6] (see also
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[3]) µq(a + pmZp) qa

[pm]q
, where [x]q = 1−qx

1−q . For f ∈ UD[Zp], the p-adic invariant
integral on Zp is defined by Kim [6] to be

Iq(f) =
∫

Zp

f(x)dµq(x) = lim
N→∞

1
[pN ]q

pN−1∑

j=0

qjf(j).(1.1)

Note that the bosonic integral is considered as the bosonic limit q → 1, I1(f) =
limq→1 Iq(f). In [1, 7, 8, 9], the p-adic fermionic integration on Zp defined as

I−q(f) =
∫

Zp

f(x)dµ−q(x).(1.2)

By (1.2), we have the following well-known integral identity

qI−q(f1) + I−q(f) = [2]qf(0),(1.3)

− qIq(f1) + Iq(f) = (1− q)f(0) +
1− q

log q

d

dx
f(x) |x=0,(1.4)

where f1(x) = f(x + 1).
The Changhee polynomials Chn(x) are defined by the generating function to be

2
2 + t

(1 + t)x =
∑

n≥0

Chn(x)
tn

n!
.(1.5)

When x = 0, Chn = Chn(0) are called Changhee numbers. The Daehee polynomials
Dn,q(x) are defined by the generating function to be

log(1 + t)
t

(1 + t)x =
∑

n≥0

Dn(x)
tn

n!
.(1.6)

When x = 0, Dn = Dn(0) are called Daehee numbers. Recently, Changhee and
Daehee numbers and polynomials are introduced (see [10, 11]). Many interesting
identities of those numbers and polynomials arise from umbral calculus.

In this paper, we consider (r, s)-generalizations for Changhee and Daehee num-
bers and polynomials and we present the Witt-type formula for each case. To state
our main results, we introduce some notation from the q-calculus (see [2]). The
q-Pochhammer symbol (a; q)n is defined as

∏n−1
j=0 (1−aqj) = (1−a)(1−aq) · · · (1−

aqn−1) with (a; q)0 = 1. The q-factorial [n]q! is defined as (q;q)n

(1−q)n . More generally,
the q-falling factorial is defined as [x]n;q = [x]q[x−1]q · · · [x+1−n]q with [x]0;q = 1.
By the q-factorial, ones can define the q-binomial coefficients as

(
n
k

)
q

= [n]q !
[k]q ![n−k]q! .

The q-exponential function eq(x) is defined by eq(t) =
∑

n≥0
tn

[n]q ! =
∑

n≥0
((1−q)t)n

(q;q)n
.

The q-binomial theorem is given by (−t; q)n =
∑n

i=0 q(
i
2)

(
n
i

)
q
ti. More generally, we
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define (1 + t)x
q to be

∑
i≥0 q(

i
2)

(
x
i

)
q
ti, where

(
x
k

)
q

= [x]k;q
[k]q! for all k ≥ 0.

2. (r, s)-Changhee Numbers and Polynomials

We define the n-th (r, s)-Changhee number as

Chn(r, s) =
(−r)n[n]s!

(1 + rs)(1 + rs2) · · · (1 + rsn)
=

rn(s; s)n

(s− 1)n(−rs; s)n
,

for all n ≥ 0. For instance, Ch0(r, s) = 1, Ch1(r, s) = − r
1+rs and Ch2(r, s) =

r2(1+s)
(1+rs)(1+rs2) .

Theorem 2.1. For all n ≥ 0.
∫

Zp

[x]n;sdµ−r(x) = Chn(r, s).

Proof. Let Ln =
∫
Zp

[x]n;sdµ−r(x). Then

∫

Zp

[x + 1]n;sdµ−r(x) =
∫

Zp

(
1− sn + sn − sx+1

1− s
[x]n−1;s

)
dµ−r(x)

= [n]sLn−1 + sn

∫

Zp

[x]n;sdµ−r(x)

= [n]sLn−1 + snLn.

On the other hand, by (1.3), we have rI−r(f1) + I−r(f) = (1 + r)f(0). Thus
r([n]sLn−1 + snLn) + Ln = 0, which implies Ln = −r[n]s

1+rsn Ln−1, for all n ≥ 1. By
the initial condition L0 = 1, and induction on n, we obtain that Ln = Chn(r, s), as
claimed. 2

Example 2.1. Theorem 2.1 with s = 1 gives
∫

Zp

x(x− 1) · · · (x + 1− n)dµ−r(x) =
(−r)nn!
(1 + r)n

,

which agrees with the generalization of Changhee numbers in [13] (for the case
r = s = 1, see [10]).

The generating function for the (r, s)-Changhee numbers is given by

∑

n≥0

Chn(r, s)
tn

[n]s!
=

∑

n≥0

(−rt)n

(−rs; s)n
.

Corollary 2.1. We have
∫

Zp

(1 + t)x
sdµ−r(x) =

∑

n≥0

s(
n
2)Chn(r, s)

tn

[n]s!
.
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Proof. By Theorem 2.1 we have

∫

Zp

(1 + t)x
sdµ−r(x) =

∑

i≥0

(∫

Zp

[x]i;sdµ−r(x)

)
s(

i
2)ti

[i]s!
=

∑

i≥0

s(
i
2)(−rt)i

(−rs, s)i
,

which completes the proof. 2

Now, we define the (r, s)-Changhee polynomials by the generating function

(1 + t)x
s

∑

i≥0

s(
i
2)(−rt)i

(−rs, s)i
=

∑

n≥0

s(
n
2)Chn(x|r, s) tn

[n]s!
.

For instance, Ch0(x|r, s) = 1, Ch1(x|r, s) = [x]s − r
1+rs , and

Ch2(x|r, s) = [x]2;s +
r2[2]s!

(1 + rs)(1 + rs2)
− r[x]s[2]s!

s(1 + rs)
.

Theorem 2.2. For all n ≥ 0,
∫

Zp

[x + y]n;sdµ−r(y) = Chn(x|r, s).

Proof. By the definitions, we have

∑

n≥0

(∫

Zp

[x + y]n;sdµ−r(y)

)
s(

n
2)tn

[n]s!
=

∫

Zp

(1 + t)x+y
s dµ−r(y)

= (1 + t)x
s

∫

Zp

(1 + t)y
sdµ−r(y)

= (1 + t)x
s

∑

n≥0

s(
n
2)(−rt)n

(−rs, s)n

=
∑

n≥0

s(
n
2)Chn(x|r, s) tn

[n]s!
,

By comparing the coefficient of tn, we complete the proof. 2

Example 2.2. Theorem 2.1 with s = 1 gives

∑

n≥0

(∫

Zp

(x + y)(x + y − 1) · · · (x + y + 1− n)dµ−r(x)

)
tn

n!
=

1 + r

1 + r + rt
(1 + t)x,

which agrees with Theorem 2.1 in [13] (for the case r = s = 1, see [10]).

3. (r, s)-Daehee Numbers and Polynomials
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Let (r, s) 6= (1, 1). We define the n-th (r, s)-Daehee number as

Dn(r, s) =
rn[n]s!
(rs, s)n


1− (1− r) log s

r(1− s) log r

n−1∑

j=0

(−1)j(rs; s)j

rjs(
j+1
2 )[j + 1]s


 ,

for all n ≥ 0. For instance, D0(r, s) = 1, D1(r, s) = r
1−rs − (1−r) log s

(1−rs)(1−s) log r and

D2(r, s) = r2(1+s)
(1−rs)(1−rs2) + (1−r)(1−2rs−rs2) log s

s(1−s)(1−rs)(1−rs2) log r .

Theorem 3.3. For all n ≥ 0.
∫

Zp

[x]n;sdµr(x) = Dn(r, s).

Proof. Let Ln =
∫
Zp

[x]n;sdµr(x). Then

∫

Zp

[x + 1]n;sdµr(x) =
∫

Zp

(
1− sn + sn − sx+1

1− s
[x]n−1;s

)
dµr(x)

= [n]sLn−1 + sn

∫

Zp

[x]n;sdµr(x)

= [n]sLn−1 + snLn.

On the other hand, by (1.4), we have

−r([n]sLn−1 + snLn) + Ln =
(−1)n[n− 1]s!

s(
n
2)

(1− r) log s

(1− s) log r
,

which implies

Ln =
r[n]s

1− rsn
Ln−1 +

(−1)n[n− 1]s!

s(
n
2)(1− rsn)

(1− r) log s

(1− s) log r
.

By induction on n with using the initial value L0 = 1, we obtain

Ln =
n∏

i=1

r[i]s
1− rsi

+
n∑

j=1

(−1)j [j − 1]s!

s(
j
2)(1− rsj)

(1− r) log s

(1− s) log r

n∏

i=j+1

r[i]s
1− rsi

,

which is equivalent to

Ln =
rn[n]s!
(rs, s)n


1− (1− r) log s

r(1− s) log r

n−1∑

j=0

(−1)j(rs; s)j

rjs(
j+1
2 )[j + 1]s


 = Dn(r, s),

as required. 2



230 Y.-K. Cho, T. Kim, T. Mansour and S.-H. Rim

Example 3.3. Theorem 3.3 with s = 1 gives (see [14] and [10])

∫

Zp

x(x− 1) · · · (x + 1− n)dµr(x) =
(−1)nn!
(1− 1

r )n


1 + log

1
r

n∑

j=1

(1− 1
r )j

j


 .

Corollary 3.2. We have
∫

Zp

(1 + t)x
sdµr(x) =

∑

n≥0

s(
n
2)Dn(r, s)

tn

[n]s!
.

Proof. Direct calculations show

∫

Zp

(1 + t)x
sdµr(x) =

∑

i≥0

(∫

Zp

[x]n;sdµr(x)

)
s(

n
2)tn

[n]s!
,

which, by Theorem 3.3, completes the proof. 2

Now, we define the (r, s)-Daehee polynomials by the generating function

(1 + t)x
s

∑

n≥0


1− (1− r) log s

r(1− s) log r

n−1∑

j=0

(−1)j(rs; s)j

rjs(
j+1
2 )[j + 1]s


 (rt)n

(rs; s)n

=
∑

n≥0

s(
n
2)Dn(x|r, s) tn

[n]s!
.

Theorem 3.4. For all n ≥ 0,
∫

Zp

[x + y]n;sdµr(y) = Dn(x|r, s).

Proof. By the definitions, we have

∑

n≥0

(∫

Zp

[x + y]n;sdµr(y)

)
s(

n
2)tn

[n]s!

=
∫

Zp

(1 + t)x+y
s dµr(y) = (1 + t)x

s

∫

Zp

(1 + t)y
sdµr(y)

= (1 + t)x
s

∑

n≥0


 rn[n]s!

(rs, s)n


1− (1− r) log s

r(1− s) log r

n−1∑

j=0

(−1)j(rs; s)j

rjs(
j+1
2 )[j + 1]s





 s(

n
2)tn

[n]s!

=
∑

n≥0

s(
n
2)Dn(x|r, s) tn

[n]s!
,

By comparing the coefficient of tn, we complete the proof. 2
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Example 3.4. Theorem 2.1 with s = 1 gives (see [14] and [10])

∑

n≥0

(∫

Zp

(x + y)(x + y − 1) · · · (x + y + 1− n)dµr(x)

)
tn

n!

= (1 + t)x
∑

n≥0


 (−1)n

(1− 1
r )n


1 + log

1
r

n∑

j=1

(1− 1
r )j

j





 tn

=


 r − 1

r − 1 + rt
+ log

1
r

∑

j≥0

∑

n≥j

(−t)n

j(1− 1
r )n−j


 (1 + t)x

=
1− r

r − 1 + rt
(log

1
r

log(1 + t)− 1)(1 + t)x.
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[1] S. Araci, M. Acikgoz, E. Şen, On the extended Kim’s p-adic q-deformed fermionic
integrals in the p-adic integer ring, J. Number Theory, 133:10(2013), 3348–3361.

[2] R. Askey, The q-gamma and q-beta functions, Appl. Anal., 8(1978), 125–141.

[3] D. V. Dolgy, T. Kim, B. Lee, C. S. Ryoo, On the q-analogue of Euler measure with
weight α, Adv. Stud. Contemp. Math., 21:4(2011), 429–435

[4] D. S. Kim, T. Kim, W. J. Kim and D. V. Dolgy, A note on Eulerian polynomials,
Abstract and Applied Analysis, Article in press.

[5] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J.
Number Theory, 76(1999), 320–329.

[6] T. Kim, q-Volkenborn integration, Russ. J. Math Phys., 19(2002), 288–299.

[7] T. Kim, Some identities on the q-Euler polynomials of higher order and q-stirling
numbers by the fermionic p-adic integral on Zp, Russ. J. Math. Phys., 16(2009),
484–491.

[8] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl.,
326(2007), 1458–1465.

[9] T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic
q-integral on Zp at q = 1, J. Math. Anal. Appl., 331(2007), 779–792.

[10] T. Kim, A note on Changhee polynomials and numbers, Adv. Studies Theor. phys.,
7:20(2013), 993–1003.

[11] T. Kim, A note on Daehee polynomials and numbers, Appl. Math. Sci., 7:120(2013),
5969–5976.

[12] T. Kim, D.S. Kim, T. Mansour, S.H. Rim and M. Schork, Umbral calulus and Sheffer
sequence of polynomials, J. Math. Phys., 54(2013), 083504.



232 Y.-K. Cho, T. Kim, T. Mansour and S.-H. Rim

[13] T. Kim, T. Mansour, S.-H. Rim and J.-J. Seo, A note on q-Changhee polynomials
and numbers, Advanced Studies in Theoretical Physics, 8:1(2014), 35–41.

[14] T. Kim, S.-H. Lee, T. Mansour and J.-J. Seo, A note on q-Daehee polynomials and
numbers, Advanced Studies in Contemporary Mathematics, 24:2(2014), 131–139.

[15] T. Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J., 31:3(2013),
353–371.


