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TWO VARIABLE HIGHER-ORDER FUBINI POLYNOMIALS

Dae San Kim, Taekyun Kim, Hyuck-In Kwon, and Jin-Woo Park

Abstract. Some new family of Fubini type numbers and polynomials

associated with Apostol-Bernoulli numbers and polynomilas were intro-

duced recently by Kilar and Simsek ([5]) and we study the two variable
Fubini polynomials as Appell polynomials whose coefficients are the Fu-

bini polynomials. In this paper, we would like to utilize umbral calculus
in order to study two variable higher-order Fubini polynomials. We derive

some of their properties, explicit expressions and recurrence relations. In

addition, we express the two variable higher-order Fubini polynomials in
terms of some families of special polynomials and vice versa.

1. Review on umbral calculus

The aim of this paper is to apply umbral calculus in order to study two
variable higher-order Fubini polynomials. For this, we need to go over some
of the basic facts about umbral calculus. For a complete treatment, one may
want to see [10].

Let C be the field of complex numbers. By F we denote the algebra of all
formal power series in the variable t with the coefficients in C :

F =

{
f(t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣∣ ak ∈ C

}
.

Let P∗ denote the vector space of all linear functionals on P. Here P = C[x]
is the ring of polynomials in x with the coefficients in C. For each L ∈ P∗, and
each p(x) ∈ P, by 〈L| p(x)〉 we denote the action of the linear functional L on

p(x). For f(t) =
∑∞

k=0 ak
tk

k! ∈ F , we let 〈f(t)| ·〉 denote the linear functional
on P given by

〈f(t)|xn〉 = an, (n ≥ 0), (see [2, 6, 8, 11]).

For L ∈ P∗, let fL(t) =
∑∞

k=0

〈
L|xk

〉
tk

k! ∈ F . Then 〈fL(t)|xn〉 = 〈L|xn〉 for
all n ≥ 0, and the map C 7→ fL(t) is a vector space isomorphism from P∗ to
F . Then F may be viewed as the vector space of all linear functionals on P as
well as the algebra of formal power series in t. Hence an element f(t) ∈ F will
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be thought of as both a formal power series and a linear functional on P. F is
called the umbral algebra, the study of which is the umbral calculus.

The order o(f(t)) of 0 6= f(t) ∈ F is the smallest integer k such that the
coefficient of tk does not vanish. Let f(t), g(t) ∈ F , with o(g(t)) = 0, o(f(t)) =
1. Then it is known that there exists a unique sequence of polynomials Sn(x)
(degSn(x) = n) such that

(1.1)
〈
g(t)f(t)k

∣∣Sn(x)
〉

= n!δn,k for n, k ≥ 0.

Such a sequence is called the Sheffer sequence for the Sheffer pair (g(t), f(t)),
which is denoted by Sn(x) ∼ (g(t), f(t)).

It is a basic fact that Sn(x) ∼ (g(t), f(t)) if and only if

(1.2)
1

g
(
f̄(t)

)exf̄(t) =

∞∑
n=0

Sn(x)
tn

n!
,

where f̄(t) is the compositional inverse of f(t) satisfying f(f̄(t)) = f̄(f(t)) = t.
For Sn(x) ∼ (g(t), f(t)), we have the Sheffer identity:

(1.3) Sn(x+ y) =
n∑

k=0

(
n

k

)
Sk(x)Pn−k(y), (see [2, 8, 11]),

where Pn(x) = g(t)Sn(x) ∼ (1, f(t)).
The following recurrence formula holds:

for Sn(x) ∼ (g(t), f(t)),

(1.4) Sn+1(x) =

(
x− g′(t)

g(t)

)
1

f ′(t)
Sn(x).

For any h(t) ∈ F , p(x) ∈ P,

(1.5) 〈h(t)|xp(x)〉 = 〈∂th(t)| p(x)〉 .

The last thing we need is the following: for Sn(x) ∼ (g(t), f(t)), rn(x) ∼
(h(t), l(t)),

(1.6) Sn(x) =

n∑
k=0

Cn,krk(x),

where

(1.7) Cn,k =
1

k!

〈
h
(
f̄(t)

)
g
(
f̄(t)

) (l (f̄(t)
))k∣∣∣∣∣xn

〉
.

2. Introduction

The two variable Fubini polynomials F
(r)
n (x; y) of order r are defined by

(2.1)
ext

(1− y(et − 1))
r =

∞∑
n=0

F (r)
n (x; y)

tn

n!
,
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where r is a positive integer. Here, in this paper y will be an arbitrary but

fixed real number so that F
(r)
n (x; y) are polynomials in x for each fixed y. Note

here that

(2.2) F (r)
n (x; y) ∼

(
(1− y(et − 1))r, t

)
.

In particular, if r = 1, then Fn(x; y) = F
(1)
n (x; y) are called two variable Fubini

polynomials and they were introduced by Kargin in [4].

For x = 0, F
(r)
n (y) = F

(r)
n (0; y) and F

(r)
n = F

(r)
n (1) = F

(r)
n (0; 1) are re-

spectively called the Fubini polynomials of order r and the Fubini numbers of

order r (see [3, 7–10]). Further, in the special case of y = 1, F
(r)
n (x; 1) are

the ordered Bell polynomials of order r and they are denoted by Ob
(r)
n (x);

F
(r)
n (1) = F

(r)
n (0; 1) are also called the ordered Bell numbers of order r and

they are also denoted by Ob
(r)
n . So Ob

(r)
n (x) and Ob

(r)
n are respectively given

by

(2.3)
ext

(2− et)r
=

∞∑
n=0

Ob(r)
n (x)

tn

n!
,

(2.4)
1

(2− et)r
=

∞∑
n=0

Ob(r)
n

tn

n!
, (see [3]).

In this paper, by using umbral calculus we will consider the two variable higher-
order Fubini polynomials and derive their properties, recurrence relations and
some identities. In particular, we will express the two variable higher-order Fu-
bini polynomials as linear combinations of some well-known families of special
polynomials and vice versa.

3. Some properties

Let us first consider the higher-order Fubini polynomials F
(r)
n (y).

∞∑
n=0

F (r)
n (y)

tn

n!
=
(
1− y(et − 1)

)−r
=

∞∑
k=0

(r + k − 1)ky
k 1

k!
(et − 1)k

=

∞∑
k=0

(r + k − 1)ky
k
∞∑
k=0

S2(n, k)
tn

n!

=

∞∑
n=0

(
n∑

k=0

(r + k − 1)kS2(n, k)yk

)
tn

n!
.
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Thus we have

(3.1) F (r)
n (y) =

n∑
k=0

(r + k − 1)kS2(n, k)yk,

and hence

(3.2) Ob(r)
n =

n∑
k=0

(r + k − 1)kS2(n, k).

As was shown in [8], we have

1

(1− y)r
F (r)
n

(
y

1− y

)
=

∞∑
k=0

(
r + k − 1

k

)
knyk.

In particular, y = 1
2 gives

(3.3) Ob(r)
n = F (r)

n (1) =
1

2r

∞∑
k=0

(
r + k − 1

k

)
kn

2k
.

From (1.3), (2.2), and (3.1), we obtain

F (r)
n (x; y) =

n∑
m=0

(
n

m

)
F (r)
m (y)xn−m

=

n∑
m=0

m∑
k=0

(
n

m

)
(r + k − 1)kS2(m, k)xn−myk,

(3.4)

and

(3.5) F (r)
n (x1 + x2; y) =

n∑
m=0

(
n

m

)
F (r)
m (x1; y)xn−m2 .

From (3.1)-(3.4), we get the following theorem.

Theorem 3.1. For n ≥ 0, we have the following:

F (r)
n (x; y) =

n∑
m=0

m∑
k=0

(
n

m

)
(r + k − 1)kS2(m, k)xn−myk.

In particular,

F (r)
n (y) =

n∑
k=0

(r + k − 1)kS2(n, k)yk.

Also, the ordered Bell numbers Ob
(r)
n of order r can be expressed by

Ob(r)
n =

n∑
k=0

(r + k − 1)kS2(n, k) =
1

2r

∞∑
k=0

(
r + k − 1

k

)
kn

2k
.
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For r ≥ 2, writing 1
(1−y(et−1))r as

1

(1− y(et − 1))
r =

1

(1− y(et − 1))
r−1

1

(1− y(et − 1))
,

we easily obtain

(3.6) F (r)
n (y) =

n∑
m=0

(
n

m

)
F (r−1)
m (y)Fn−m(y).

Before we turn to our next result, we recall that the Frobenius-Euler polyno-

mials H
(r)
n (u;x) of order r are given by

(3.7)

(
1− u
et − u

)r

ext =

∞∑
n=0

Hn(u;x)
tn

n!
, (see [1, 3, 5–7]),

where u 6= 1.
For y 6= 0, we see that

∞∑
n=0

F (r)
n (x; y)

tn

n!
=

1

(1− y(et − 1))
r e

xt =

(
1− 1+y

y

et − 1+y
y

)r

ext

=

∞∑
n=0

H(r)
n

(
1 + y

y

∣∣∣∣x) tn

n!
.

Hence we have

(3.8) F (r)
n (x; y) = H(r)

n

(
1 + y

y

∣∣∣∣x) , (y 6= 0).

From (3.6) and (3.8), we have the following result.

Theorem 3.2. For n ≥ 2, we have

F (r)
n (y) =

n∑
m=0

(
n

m

)
F (r−1)
m (y)Fn−m(y), (r ≥ 2),

and

F (r)
n (x; y) = H(r)

n

(
1 + y

y

∣∣∣∣x) , (y 6= 0).

For the next discussion, we first observe the following.(
1− y(et − 1)

)r
=

∞∑
l=0

(r)l(−y)l
1

l!
(et − 1)l

=

∞∑
l=0

(r)l(−y)l
∞∑
k=l

S2(k, l)
tk

k!

=

∞∑
k=0

(
k∑

l=0

(r)lS2(k, l)(−y)l

)
tk

k!
.

(3.9)
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Now, from (2.1) and (3.9), we get

∞∑
n=0

xn
tn

n!
=

∞∑
k=0

( k∑
l=0

(r)lS2(k, l)(−y)l
) tk
k!

∞∑
m=0

F (r)
m (x; y)

tm

m!

=

∞∑
n=0

(
n∑

k=0

(
n

k

) k∑
l=0

(r)lS2(k, l)(−y)lF
(r)
n−k(x; y)

)
tn

n!
.

Thus we obtain

xn =

n∑
k=0

k∑
l=0

(
n

k

)
(r)lS2(k, l)(−y)lF

(r)
n−k(x; y)

=

n∑
k=0

n−k∑
l=0

(
n

k

)
(r)lS2(n− k, l)(−y)lF

(r)
k (x; y).

(3.10)

Letting x = 0, we get

n∑
k=0

n−k∑
l=0

(
n

k

)
(r)lS2(n− k, l)(−y)lF

(r)
k (y) =

{
0, n ≥ 1,
1, n = 0.

(3.11)

Equivalently, (3.11) can be stated as

F
(r)
0 (y) = 1,

F (r)
n (y) = −

n−1∑
k=0

n−k∑
l=0

(
n

k

)
(r)lS2(n− k, l)(−y)lF

(r)
k (y) for n ≥ 1.

(3.12)

The next theorem follows from (3.10) and (3.12).

Theorem 3.3. For n ≥ 0, we have

xn =

n∑
k=0

n−k∑
l=0

(
n

k

)
(r)lS2(n− k, l)(−y)lF

(r)
k (x; y),

and

F (r)
n (y) = −

n−1∑
k=0

n−k∑
l=0

(
n

k

)
(r)lS2(n− k, l)(−y)lF

(r)
k (y) for n ≥ 1,

with F
(r)
0 (y) = 1.

Invoking (1.5), for n ≥ 1, we have

F (r)
n (z; y) =

〈
ezt

(1− y(et − 1))
r

∣∣∣∣xn〉
=

〈(
∂t

1

(1− y(et − 1))
r

)
ezt
∣∣∣∣xn−1

〉
+

〈
1

(1− y(et − 1))
r

(
∂te

zt
)∣∣∣∣xn−1

〉
.

(3.13)
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Clearly, the second term of (3.13) is zF
(r)
n−1(z; y). On the other hand, the first

term of (3.13) is

ry

〈
1

(1− y(et − 1))
r+1 e

(z+1)t

∣∣∣∣∣xn
〉

= ryF
(r+1)
n−1 (z + 1; y).

Thus we have derived the next result.

Theorem 3.4. For n ≥ 0, we have

F
(r)
n+1(x; y) = xF (r)

n (x; y) + ryF (r+1)
n (x+ 1; y),

and
F

(r)
n+1(y) = ryF (r+1)

n (1; y).

Using (1.4) and (2.2), we obtain

(3.14) F
(r)
n+1(x; y) =

(
x− g′(t)

g(t)

)
F (r)
n (x; y),

with g(t) = (1− y(et − 1))
r
.

Since g′(t)
g(t) = −ryet

1−y(et−1) , (3.14) is equal to

F
(r)
n+1(x; y) =

(
x+

ryet

1− y(et − 1)

)
F (r)
n (x; y)

= xF (r)
n (x; y) + ryet

1

1− y(et − 1)

n∑
m=0

(
n

m

)
F (r)
m (y)xn−m

= xF (r)
n (x; y) + ry

n∑
m=0

(
n

m

)
F (r)
m (y)Fn−m(x+ 1; y)

= xF (r)
n (x; y) + ryF (r+1)

n (x+ 1; y).

This gives another way of obtaining the results in Theorem 3.4.

4. F (r)
n (x; y) in terms of some special polynomials

Here we will express the two variable higher-order Fubini polynomials

F
(r)
n (x; y) as linear combinations of some well-known families of special poly-

nomials.
We first recall from (2.2) that F

(r)
n (x; y) ∼ ((1− y(et − 1))r, t). Let

(4.1) F (r)
n (x; y) =

n∑
m=0

Cn,mSm(x),

with Sn(x) ∼ (h(t), l(t)). Then, from (1.7) we note that

Cn,m =
1

m!

〈
h(t)(l(t))m| 1

(1− y(et − 1))
r x

n

〉
=

1

m!

〈
h(t)(l(t))m|F (r)

n (x; y)
〉
.

(4.2)
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Throughout this section, we will use (4.2).

Let Bn(x) be the Bernoulli polynomials with Sn(x) = Bn(x) ∼
(

et−1
t , t

)
.

Then

Cn,m =
1

m!

〈
et − 1

t
tm
∣∣∣∣F (r)

n (x; y)

〉
=

1

m!

〈
et − 1

t

∣∣∣∣ tmF (r)
n (x; y)

〉
=

(
n

m

)〈
et − 1

t

∣∣∣∣F (r)
n−m(x; y)

〉
=

(
n

m

)∫ 1

0

F
(r)
n−m(u; y)du

=

(
n

m

)
1

n−m+ 1

[
F

(r)
n−m+1(u; y)

]1
0

=
1

n+ 1

(
n+ 1

m

)(
F

(r)
n−m+1(1; y)− F (r)

n−m+1(y)
)
.

Thus we obtain the following result.

Theorem 4.1. For n ≥ 0, we have

F (r)
n (x; y) =

1

n+ 1

n∑
m=0

(
n+ 1

m

)(
F

(r)
n−m+1(1; y)− F (r)

n−m+1(y)
)
Bm(x).

Let Hn(u|x) be the Frobenius-Euler polynomials with Sn(x) = Hn(u|x) ∼(
et−u
1−u , t

)
. Then

Cn,m =

(
n

m

)〈
et − u
1− u

∣∣∣∣F (r)
n−m(x; y)

〉
=

1

1− u

(
n

m

)(
F

(r)
n−m(1; y)− uF (r)

n−m(y)
)
.

Hence we get the following theorem.

Theorem 4.2. For n ≥ 0, we have

F (r)
n (x; y) =

1

1− u

n∑
m=0

(
n

m

)(
F

(r)
n−m(1; y)− uF (r)

n−m(y)
)
Hm(u|x).

Here we let (x)n be the falling factorial polynomials with Sn(x) = (x)n ∼
(1, et − 1). Then

Cn,m =

〈
1

m!
(et − 1)m

∣∣∣∣F (r)
n (x; y)

〉
=

〈 ∞∑
k=m

S2(k,m)
tk

k!

∣∣∣∣∣F (r)
n (x; y)

〉
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=

n∑
k=m

1

k!
S2(k,m)

〈
tk
∣∣F (r)

n (x; y)
〉

=

n∑
k=m

(
n

k

)
S2(k,m)F

(r)
n−k(y).

So we have the following result.

Theorem 4.3. For n ≥ 0, we have

F (r)
n (x; y) =

n∑
m=0

(
n∑

k=m

(
n

k

)
S2(k,m)F

(r)
n−k(y)

)
(x)m.

Finally, let Beln(x) be the Bell polynomials with Sn(x) = Beln(x) =∑n
k=0 S2(n, k)xk ∼ (1, log(1 + t)). Then it is easy to see that

Cn,m =

〈
1

m!
(log(1 + t))

m

∣∣∣∣F (r)
n (x; y)

〉
=

n∑
k=m

(
n

k

)
S1(k,m)F

(r)
n−k(y).

Thus we have the following theorem.

Theorem 4.4. For n ≥ 0, we have

F (r)
n (x; y) =

n∑
m=0

(
n∑

k=m

(
n

k

)
S1(k,m)F

(r)
n−k(y)

)
Belm(x).

5. Some special polynomials in terms of F (r)
n (x; y)

In this section, we will express some families of special polynomials as linear

combinations of the two variable higher-order Fubini polynomials F
(r)
n (x; y).

For this, it is more convenient to use (1.1) than (1.7).
Let p(x) ∈ C[x] be a polynomial of degree ≤ n. Then we can write

p(x) =

n∑
m=0

amF
(r)
m (x; y)

for unique am ∈ C(y).
Now, from (1.1) and (2.2), we note that〈(

1− y(et − 1)
)r
tm
∣∣ p(x)

〉
=

n∑
l=0

al

〈(
1− y(et − 1)

)r
tm
∣∣F (r)

l (x; y)
〉

=

n∑
l=0

all!δm,l

= m!am.

(5.1)
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Thus, from (3.9) and (5.1), we further observe that

am =
1

m!

〈(
1− y(et − 1)

)r
tm
∣∣ p(x)

〉
=

1

m!

〈 ∞∑
k=0

1

k!

k∑
l=0

(r)lS2(k, l)(−y)l

∣∣∣∣∣ tm+kp(x)

〉

=
1

m!

n−m∑
k=0

1

k!

k∑
l=0

(r)lS2(k, l)(−y)l
〈
1
∣∣tm+kp(x)

〉
.

(5.2)

Throughout this section, we will use (5.2).
For p(x) = Bn(x),

am =
1

m!

n−m∑
k=0

1

k!

k∑
l=0

(r)lS2(k, l)(−y)l(n)m+kBn−m−k

=

n−m∑
k=0

k∑
l=0

(
n

m

)(
n−m
k

)
(r)lS2(k, l)Bn−m−k(−y)l.

(5.3)

Similarly, for p(x) = Hn(u|x),

(5.4) am =

n−m∑
k=0

k∑
l=0

(
n

m

)(
n−m
k

)
(r)lS2(k, l)Hn−m−k(u)(−y)l.

Here Hn(u) = Hn(u|0) are the Frobenius-Euler numbers.
On the other hand, for p(x) = xn,

am =

n−m∑
k=0

k∑
l=0

(
n

m

)(
n−m
k

)
(r)lS2(k, l)(−y)l

〈
1
∣∣xn−m−k 〉

=

n−m∑
k=0

k∑
l=0

(
n

m

)(
n−m
k

)
(r)lS2(k, l)(−y)lδn−m,k

=

n−m∑
l=0

(
n

m

)
(r)lS2(n−m, l)(−y)l.

(5.5)

Collecting our results in (5.3), (5.4) and (5.5), we have the next theorem.

Theorem 5.1. For n ≥ 0, we have

Bn(x) =
n∑

m=0

(
n−m∑
k=0

k∑
l=0

(
n

m

)(
n−m
k

)
(r)lS2(k, l)Bn−m−k(−y)l

)
F (r)
m (x; y),

Hn(u|x) =
n∑

m=0

(
n−m∑
k=0

k∑
l=0

(
n

m

)(
n−m
k

)
(r)lS2(k, l)Hn−m−k(u)(−y)l

)
F (r)
m (x; y),
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and

xn =

n∑
m=0

(
n−m∑
l=0

(
n

m

)
(r)lS2(n−m, l)(−y)l

)
F (r)
m (x; y).

Now, applying (5.2) to p(x) = Beln(x) =
∑n

j=0 S2(n, j)xj , we get

(5.6) am =
1

m!

n−m∑
k=0

1

k!

k∑
l=0

(r)lS2(k, l)(−y)l
〈
1
∣∣tm+kBeln(x)

〉
.

Here 〈
1
∣∣tm+kBeln(x)

〉
=

n∑
j=m+k

S2(n, j)
〈
1
∣∣tm+kxj

〉
=

n∑
j=m+k

S2(n, j)(j)m+kδj,m+k

= S2(n,m+ k)(m+ k)!.

(5.7)

Combining (5.6) and (5.7), we obtain

(5.8) am =

n−m∑
k=0

k∑
l=0

(
m+ k

m

)
(r)lS2(k, l)S2(n,m+ k)(−y)l.

Similarly, application of (5.2) to p(x) = (x)n =
∑n

j=0 S1(n, j)xj gives

(5.9) am =

n−m∑
k=0

k∑
l=0

(
m+ k

m

)
(r)lS2(k, l)S1(n,m+ k)(−y)l.

Finally, from (5.8) and (5.9), we have the following theorem.

Theorem 5.2. For n ≥ 0, we have

Beln(x) =

n∑
m=0

(
n−m∑
k=0

k∑
l=0

(
m+ k

m

)
(r)lS2(k, l)S2(n,m+ k)(−y)l

)
F (r)
m (x; y),

and

(x)n =

n∑
m=0

(
n−m∑
k=0

k∑
l=0

(
m+ k

m

)
(r)lS2(k, l)S1(n,m+ k)(−y)l

)
F (r)
m (x; y).
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