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THE n-TH TWISTED CHANGHEE POLYNOMIALS

AND NUMBERS

Seog-Hoon Rim, Jin-Woo Park, Sung-Soo Pyo, and Jongkyum Kwon

Abstract. The Changhee polynomials and numbers are introduced in
[6]. Some interesting identities and properties of those polynomials are
derived from umbral calculus (see [6]). In this paper, we consider Witt-
type formula for the n-th twisted Changhee numbers and polynomials and
derive some new interesting identities and properties of those polynomials
and numbers from the Witt-type formula which are related to special
polynomials.

1. Introduction

Let p be an odd prime number. Zp, Qp and Cp will denote the ring of p-adic
integers, the field of p-adic numbers and the completion of algebraic closure of
Qp. The p-adic norm | · |p is normalized by |p|p = 1

p
. Let C(Zp) be the space

of continuous functions on Zp. For f ∈ C(Zp), the fermionic p-adic integral on
Zp is defined by Kim to be

(1.1) I−1(f) =

∫

Zp

f(x)dµ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)(−1)x, (see [8, 15]).

Let f1(x) = f(x+ 1). Then, by (1.1), we get

(1.2) I−1(f1) + I−1(f) = 2f(0), (see [3, 5, 7–11]).

It is well known that the Euler polynomials are defined by the generating
function to be

(1.3)
2

εet + 1
ext =

∞∑

n=0

En,ε(x)
tn

n!
,

(see [1–14,16]).
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When x = 0, En,ε = En,ε(0) are called the n-th twisted Euler numbers. The
Changhee polynomials are defined by the generating function to be

(1.4)
2

t+ 2
(1 + t)x =

∞∑

n=0

Chn(x)
tn

n!
, (see [6]).

When x = 0, Chn = Chn(0) are called the Changhee numbers, (see [6]).
The Stirling number of the first kind is defined by

(1.5) (x)n = x(x − 1) · · · (x− n+ 1) =

n∑

l=0

S1(n, l)x
l, (see [6]).

The Changhee numbers and polynomials are introduced in [9]. Many inter-
esting identities of those numbers and polynomials arise from umbral calculus
(see [9]). We consider Witt-type formula for the n-th twisted Changhee num-
bers and polynomials and derive some new interesting identities and properties
of those polynomials and numbers from the Witt-type formula which are related
to special polynomials.

2. The n-th twisted Changhee numbers and polynomials

For n ∈ N, let Tp be the p-adic locally constant space defined by

Tp = ∪∪∪
n≥1

Cpn = lim
n→∞

Cpn ,

where Cpn =
{
ω |ωpn

= 1
}
is the cyclic group of order pn.

For ε ∈ Tp, the n-th twisted changhee polynomial are defined by
∞∑

n=0

Chn,ε(x)
tn

n!
=

∫

Zp

(1 + εt)x+ydµ−1(y)(2.1)

= (1 + εt)x
∫

Zp

(1 + εt)ydµ−1(y)

=
2

2 + εt
(1 + εt)x,

and
∫

Zp

(1 + εt)x+ydµ−1(y) =
∞∑

n=0

εn
∫

Zp

(
x+ y

n

)
dµ−1(y)t

n(2.2)

=

∞∑

n=0

εn
∫

Zp

(x+ y)ndµ−1(y)
tn

n!
.

Therefore, by (2.1) and (2.2) we obtained the following theorem.

Theorem 2.1. For n ≥ 0, we have

εn
∫

Zp

(x)ndµ−1(x) = Chn,ε,

where Chn,ε are called the n-th twisted Changhee numbers.
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Therefore, by (2.1) and (2.2), we obtain the following theorem.

Theorem 2.2. For n ≥ 0, we have

εn
∫

Zp

(x+ y)ndµ−1(y) = Chn,ε(x).

From (2.1) and (2.2), we note that

(2.3)

∞∑

n=0

εn
∫

Zp

(
x

n

)
dµ−1(x)t

n =
2

2 + εt
=

∞∑

n=0

(−
ε

2
)ntn.

Thus, by comparing the coefficients on the both sides, we obtain the following
theorem.

Theorem 2.3. For n ≥ 0, we have
∫

Zp

(
x

n

)
dµ−1(x) = (−1)n(

1

2
)n, (see [6]).

Replacing t by et − 1
ε
in (1.3), we get

(2.4) εx
∞∑

n=0

En,ε(x)
tn

n!
=

2

εet + 1
(εet)x =

∞∑

n=0

Chn,ε(x)
1

n!

(
ex −

1

ε

)n
,

where En,ε(x) is the n-th twisted Euler polynomials and
∞∑

n=0

Chn,ε(x)
1

n!
(ex −

1

ε
)n =

∞∑

n=0

Chn,ε(x)
1

n!
ε−nn!

( ∞∑

m=n

S2(m,n)
tm

m!

)
(2.5)

=

∞∑

m=0

m∑

n=0

Chn,ε(x)S2(m,n)ε−n tn

m!
.

By comparing the coefficients on the both sides of (2.4) and (2.5), we obtain
the following theorem.

Theorem 2.4. For m ≥ 0, we have

Em,ε =

m∑

n=0

ε−n−xChm,εS2(m,n),

where S2(m,n) is the Stirling number of the second kind.

By Theorem 2.2, we easily get

Chn,ε(x) = εn
∫

Zp

(x+ y)ndµ−1(y)(2.6)

= εn
n∑

l=0

S1(n, l)

∫

Zp

(x+ y)ldµ−1(y)

= εn
n∑

l=0

S1(n, l)El(x).
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Therefore, by (2.6), we obtain the following theorem.

Theorem 2.5. For n ≥ 0, we have

Chn,ε(x) = εn
n∑

l=0

S1(n, l)El(x),

where S1(n, l) is the Stirling number of the first kind.

The n-th twisted Changhee polynomials of order k are defined by the gen-
erating function to be

∞∑

n=0

Ch(k)
n,ε(x)

tn

n!
(2.7)

=

∫

Zp

· · ·

∫

Zp

(1 + εt)x1+x2+···+xk+xdµ−1(x1) · · · dµ−1(xk)

= (1 + εt)x
∫

Zp

· · ·

∫

Zp

(1 + εt)x1+x2+···+xkdµ−1(x1) · · · dµ−1(xk)

= (1 + εt)x
( 2

1 + εt

)k
.

We observe that∫

Zp

· · ·

∫

Zp

(1 + εt)x1+x2+···+xk+xdµ−1(x1) · · · dµ−1(xk)(2.8)

=

∞∑

n=0

εn
∫

Zp

(x1 + x2 + · · ·+ xk + x)ndµ−1(x1) · · · dµ−1(xk)
tn

n!
.

Therefore, by (2.7), we obtain the generating function of Ch
(k)
n,ε as follows.

Theorem 2.6. The generating function of Ch
(k)
n,ε is given by

∞∑

n=0

Ch(k)
n,ε

tn

n!
=

∫

Zp

· · ·

∫

Zp

(1 + εt)x1+x2+···+xkdµ−1(x1) · · · dµ−1(xk).

From (2.8), we have

(2.9) εn
∫

Zp

· · ·

∫

Zp

(
x1 + x2 + · · ·+ xk

n

)
dµ−1(x1) · · · dµ−1(xk) =

Ch
(k)
n,ε

n!
.

By (2.6), we get

Ch(k)
n,ε = εn

n∑

l=0

S1(n, l)

∫

Zp

· · ·

∫

Zp

xl
1 · · ·x

l
kdµ−1(x1) · · · dµ−1(xk)(2.10)

= εn
n∑

l=0

S1(n, l)(El)
k,
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where (El)
k = El × El × · · · × El︸ ︷︷ ︸

k-times

.

Therefore, by (2.10), we obtain the following theorem.

Theorem 2.7. For n ≥ 0, k ≥ 1, we have

Ch(k)
n,ε = εn

n∑

l=0

S1(n, l)(El)
k,

where S1(m,n) is the Stirling number of the first kind.

Now we consider the n-th twisted Changhee polynomials of the second kind
as follows:

∞∑

n=0

Ĉhn,ε(x)
tn

n!
=

∫

Zp

(1 + εt)−y+xdµ−1(y)(2.11)

= (1 + εt)x
∫

Zp

(1 + εt)−ydµ−1(y)

=
2(1 + εt)

2 + εt
(1 + εt)x.

Hence,

Ĉhn,ε(x) = εn
∫

Zp

(−y + x)ndµ−1(y)(2.12)

= εn
n∑

l=0

S1(n, l)(−1)l
∫

Zp

(y − x)ldµ−1(y)

= εn
n∑

l=0

S1(n, l)(−1)lEl(−x).

Therefore, by (2.12), we obtain the following theorem.

Theorem 2.8. For n ≥ 0, we have

Ĉhn,ε(x) = εn
n∑

l=0

S1(n, l)(−1)lEl(−x).

By replacing t by et − 1
ε
in (2.11)

∞∑

m=0

m∑

n=0

Ĉhn,ε(x)ε
−nS2(m,n)

tm

m!
(2.13)

=

∞∑

n=0

Ĉhn,ε(x)
1

n!
n!ε−n

∞∑

m=n

S2(m,n)
tm

m!

=

∞∑

n=0

Ĉhn,ε(x)
1

n!

(
et −

1

ε

)n
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=
2

εet + 1

(
εet
)x+1

= εx+1 2

εet + 1
et(x+1)

= εx+1
∞∑

m=0

Em,ε(x+ 1)
tm

m!
.

Therefore, by (2.13), we obtain the following theorem.

Theorem 2.9. For m ≥ 0, we have

(2.14) Em(x+ 1) =

m∑

n=0

Ĉhn,ε(x)ε
−n−x−1S2(m,n).

Now, we consider the n-th twisted Changhee polynomials of the first kind
relate to the n-th twisted Changhee polynomials of the second kind.

(−1)nChn,ε(x)

n!
= (−1)nεn

∫

Zp

(
x+ y

n

)
dµ−1(y)(2.15)

= εn
∫

Zp

(
−x− y + n− 1

n

)
dµ−1(y)

= εn
∞∑

m=0

(
n− 1

n−m

)∫

Zp

(
−x− y

m

)
dµ−1(y)

= εn
n∑

m=1

(
n− 1

m− 1

)
ε−mm!εm

∫

Zp

(
−x− y

m

)
dµ−1(y)

=

n∑

m=1

(
n− 1

m− 1

)
εn−m Ĉhm,ε(−x)

m!
.

Therefore, for n ≥ 1, we have

(2.16)
(−1)Chn,ε(x)

n!
=

n∑

m=1

(
n− 1

m− 1

)
εn−m Ĉhm,ε(−x)

m!
.

For k ∈ N, let us consider the n-th twisted Changhee numbers of order k as
follows:

(2.17) εn
∫

Zp

· · ·

∫

Zp

(−x1 − x2 · · · − xk)ndµ−1(x1) · · · dµ−1(xk) = Ĉhn,ε,

where n ∈ Z≥0.

Then the generating function of Ĉh
(k)

n,ε is given by

∞∑

n=0

Ĉh
(k)

n,ε

tn

n!
(2.18)

=

∫

Zp

· · ·

∫

Zp

(1 + εt)−x1−···−xkdµ−1(x1) · · · dµ−1(xk)
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=

∞∑

n=0

εn
∫

Zp

· · ·

∫

Zp

(−x1 − · · · − xk)ndµ−1(x1) · · · dµ−1(xk)
tn

n!
.

Now, we observe that
(2.19)∫

Zp

· · ·

∫

Zp

(1 + εt)−x1−···−xkdµ−1(x1) · · · dµ−1(xk)

=

∞∑

m=0

εm
∫

Zp

· · ·

∫

Zp

(−1)m(x1 + · · ·+ xk)
mdµ−1(x1) · · · dµ−1(xn)

(log(1+εt))m

m!

=

∞∑

m=0

εm(−1)m(Em)k
∞∑

n=m

S1(n,m)
tn

n!

=

∞∑

n=0

(
n∑

m=0

εm(−1)m(Em)kS1(n,m)

)
tn

n!
.

From (2.18) and (2.19), we have

(2.20) Ĉh
(k)

n,ε = εn
n∑

m=0

(−1)m(Em)kS1(n,m),

where (Em)k = Em × · · · × Em︸ ︷︷ ︸
k-times

.

Now, we define the n-th twisted Changhee polynomials of the second kind
of order k as follows:

(2.21) Ĉh
(k)

n,ε(x) = εn
∫

Zp

· · ·

∫

Zp

(−x1 · · ·xk − x)ndµ−1(x1) · · · dµ−1(xk).

Then the generating function of Ĉh
(k)

n,ε(x) are given by

∞∑

n=0

Ĉhn

(k)
(x)

tn

n!
(2.22)

=

∞∑

n=0

∫

Zp

· · ·

∫

Zp

εn(−x1 − · · · − xk − x)ndµ−1(x1) · · · dµ−1(xk)
tn

n!

=

∫

Zp

· · ·

∫

Zp

(1 + εt)−x1···xk−xdµ−1(x1) · · · dµ−1(xk).

Proceeding similarly to (2.12), we have

(2.23) Ĉh
(k)

n,ε(x) = εn
n∑

m=0

(−1)mS1(n,m)

m∑

l=0

(
m

l

)
(Em−l)

kxl,

where (Em−l)
k = Em−l × · · · × Em−l︸ ︷︷ ︸

k-times

.
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