• 제목/요약/키워드: space of Dirichlet type

검색결과 11건 처리시간 0.019초

SCHATTEN CLASSES OF COMPOSITION OPERATORS ON DIRICHLET TYPE SPACES WITH SUPERHARMONIC WEIGHTS

  • Zuoling Liu
    • 대한수학회보
    • /
    • 제61권4호
    • /
    • pp.875-895
    • /
    • 2024
  • In this paper, we completely characterize the Schatten classes of composition operators on the Dirichlet type spaces with superharmonic weights. Our investigation is basced on building a bridge between the Schatten classes of composition operators on the weighted Dirichlet type spaces and Toeplitz operators on weighted Bergman spaces.

Generalized Integration Operator between the Bloch-type Space and Weighted Dirichlet-type Spaces

  • Ardebili, Fariba Alighadr;Vaezi, Hamid;Hassanlou, Mostafa
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.519-534
    • /
    • 2020
  • Let H(𝔻) be the space of all holomorphic functions on the open unit disc 𝔻 in the complex plane ℂ. In this paper, we investigate the boundedness and compactness of the generalized integration operator $$I^{(n)}_{g,{\varphi}}(f)(z)=\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^z\;f^{(n)}({\varphi}({\xi}))g({\xi})\;d{\xi},\;z{\in}{\mathbb{D}},$$ between Bloch-type and weighted Dirichlet-type spaces, where 𝜑 is a holomorphic self-map of 𝔻, n ∈ ℕ and g ∈ H(𝔻).

NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE

  • Choi, Ki Seong
    • 충청수학회지
    • /
    • 제26권2호
    • /
    • pp.393-402
    • /
    • 2013
  • For 0 < $p$ < ${\infty}$, ${\alpha}$ > -1 and 0 < $r$ < 1, we show that if $f$ is in the space of Dirichlet type $\mathfrak{D}^p_{p-1}$, then ${\int}_{1}^{0}M_{p}^{p}(r,f^{\prime})(1-r)^{p-1}rdr$ < ${\infty}$ and ${\int}_{1}^{0}M_{(2+{\alpha})p}^{(2+{\alpha})p}(r,f^{\prime})(1-r)^{(2+{\alpha})p+{\alpha}}rdr$ < ${\infty}$ where $M_p(r,f)=\[\frac{1}{2{\pi}}{\int}_{0}^{2{\pi}}{\mid}f(re^{it}){\mid}^pdt\]^{1/p}$. For 1 < $p$ < $q$ < ${\infty}$ and ${\alpha}+1$ < $p$, we show that if there exists some positive constant $c$ such that ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathfrak{D}^p_{\alpha}}$ for all $f{\in}\mathfrak{D}^p_{\alpha}$, then ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathcal{B}_p(q)}$ where $\mathcal{B}_p(q)$ is the weighted Besov space. We also find the condition of measure ${\mu}$ such that ${\sup}_{a{\in}D}{\int}_D(k_a(z)(1-{\mid}a{\mid}^2)^{(p-a-1)})^{q/p}d{\mu}(z)$ < ${\infty}$.

MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF BLOCH SPACE

  • Li, Songxiao;Lou, Zengjian;Shen, Conghui
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.429-441
    • /
    • 2020
  • Let M(X, Y) denote the space of multipliers from X to Y, where X and Y are analytic function spaces. As we known, for Dirichlet-type spaces 𝓓αp, M(𝓓p-1p, 𝓓q-1q) = {0}, if p ≠ q, 0 < p, q < ∞. If 0 < p, q < ∞, p ≠ q, 0 < s < 1 such that p + s, q + s > 1, then M(𝓓p-2+sp, 𝓓q-2+sq) = {0}. However, X ∩ 𝓓p-1p ⊆ X ∩ 𝓓q-1q and X ∩ 𝓓p-2+sp ⊆ X ∩ 𝓓q-2+sp whenever X is a subspace of the Bloch space 𝓑 and 0 < p ≤ q < ∞. This says that the set of multipliers M(X ∩ 𝓓 p-2+sp, X∩𝓓q-2+sq) is nontrivial. In this paper, we study the multipliers M(X ∩ 𝓓p-2+sp, X ∩ 𝓓q-2+sq) for distinct classical subspaces X of the Bloch space 𝓑, where X = 𝓑, BMOA or 𝓗.

EXISTENCE OF SOLUTIONS FOR GRADIENT TYPE ELLIPTIC SYSTEMS WITH LINKING METHODS

  • Jin, Yinghua;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제20권1호
    • /
    • pp.65-70
    • /
    • 2007
  • We study the existence of nontrivial solutions of the Gradient type Dirichlet boundary value problem for elliptic systems of the form $-{\Delta}U(x)={\nabla}F(x,U(x)),x{\in}{\Omega}$, where ${\Omega}{\subset}R^N(N{\geq}1)$ is a bounded regular domain and U = (u, v) : ${\Omega}{\rightarrow}R^2$. To study the system we use the liking theorem on product space.

  • PDF

어파인 불변성 사면체 분할법의 가시화 (절편 법을 이용한 사면체 구조의 가시화) (Visualization of Affine Invariant Tetrahedrization (Slice-Based Method for Visualizing the Structure of Tetrahedrization))

  • 이건
    • 한국정보처리학회논문지
    • /
    • 제3권7호
    • /
    • pp.1894-1905
    • /
    • 1996
  • Dirichlet tessellation 과 쌍대관계에 있는 Delaunay triangulation은 어파인 불변성을 가지지 못한다. 즉, 삼각형 분할을 이루는데 있어서 각 꼭지점들을 나타내는 좌표축의 선택에 영향을 받는다. 같은 이유로 Delaunay triangulation (사면체 분할법) 도 어파인 불변성을 가지지 못한다. 본 논문에서는 공간상 점들로 사면체 분할하는데 있어서 변환, 확대 축소, 일그러뜨림, 회전에도 여향을 받지 않는 새로운 유형의 사면체 분할 방법을 제시하였다. 어파인 사면체 분할을 논의 할 때 기존의 어파인 불변성 평면적 삼각형 분할을 삼차원 분할을 삼차원적 사면체 분할로 연장시키는 방법을 사용 하였다. 삼차원 공간상의 두 점간의 거리를 새롭게 정의 하였다. 사면체 구조의 가시 화를 통하여 Delaunay 사면체 분할과 어파인 불변성 사면체 분하라 결과를 구별시 킬 수 있었다.

  • PDF

Comparing Two Approaches of Analyzing Mixed Finite Volume Methods

  • Chou, So-Hsiang;Tang, Shengrong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제5권1호
    • /
    • pp.55-78
    • /
    • 2001
  • Given the anisotropic Poisson equation $-{\nabla}{\cdot}{\mathcal{K}}{\nabla}p=f$, one can convert it into a system of two first order PDEs: the Darcy law for the flux $u=-{\mathcal{K}{\nabla}p$ and conservation of mass ${\nabla}{\cdot}u=f$. A very natural mixed finite volume method for this system is to seek the pressure in the nonconforming P1 space and the Darcy velocity in the lowest order Raviart-Thomas space. The equations for these variables are obtained by integrating the two first order systems over the triangular volumes. In this paper we show that such a method is really a standard finite element method with local recovery of the flux in disguise. As a consequence, we compare two approaches in analyzing finite volume methods (FVM) and shed light on the proper way of analyzing non co-volume type of FVM. Numerical results for Dirichlet and Neumann problems are included.

  • PDF

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.

스토킹 관련 언론기사에 대한 텍스트네트워크분석 (Text Network Analysis on Stalking-Related News Articles )

  • 지은선;정상희
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.579-585
    • /
    • 2023
  • 본 연구의 목적은 텍스트네트워트분석을 통해 스토킹에 대한 정치성향의 언론기사 내에 핵심 단어를 탐색하고 내재된 의도를 살펴보는 것이다. 2018년 1월 1일부터 2022년 12월 31일까지 보도된 보수언론기사(조선일보, 중앙일보) 824건, 진보언론기사(한겨레신문, 경향신문) 783건으로 총 1,607건을 선정하여 LDA(Latent Dirichlet Allocation) 기반의 토픽모델링 기법으로 도출된 주제범주의 양상을 탐색하였다. 연구결과는 보수언론과 진보언론의 공통된 토픽은 젠더폭력의 인식개선, 신변보호 및 처벌강도, 스토커 신상공개 도출되었고 두 언론의 상이한 토픽은 보수언론에서는 스토커의 가해행위, '신당역 살인사건'의 개요와 진보언론은 '신당역 살인사건'의 가중처벌요구, (사이버공간의) 성착취 범죄 근절로 구성되었다. 본 연구는 스토킹에 대한 언론기사 간의 이념적 의견에 따라 보도형태에 변화가 있음을 시사한다.