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Abstract

Given the anisotropic Poisson equation −∇ · K∇p = f , one can convert it
into a system of two first order PDEs: the Darcy law for the flux u = −K∇p
and conservation of mass ∇ · u = f . A very natural mixed finite volume method
for this system is to seek the pressure in the nonconforming P1 space and the
Darcy velocity in the lowest order Raviart-Thomas space. The equations for these
variables are obtained by integrating the two first order systems over the triangular
volumes. In this paper we show that such a method is really a standard finite
element method with local recovery of the flux in disguise. As a consequence, we
compare two approaches in analyzing finite volume methods (FVM) and shed light
on the proper way of analyzing non co–volume type of FVM. Numerical results for
Dirichlet and Neumann problems are included.

1 Introduction

Consider the variable-coefficient Poisson equation in a polygonal domain Ω ⊂ R2

{ −∇ · K∇p = f in Ω,
p = 0 on ∂Ω,

(1)

where K = K(x) is a symmetric positive definite matrix function such that there exist
two positive constants α1 and α2 with

α1ξ
T ξ ≤ ξTK(x)ξ ≤ α2ξ

T ξ ∀ξ ∈ R2,x ∈ Ω̄. (2)

Now let us introduce a flux variable u := −K∇p and write the above equation as
the system of first order partial differential equations




∇ · u− f = 0 in Ω
u +K∇p = 0 in Ω

p = 0 on ∂Ω
(3)
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Problems (1) and (3) are equivalent when the right hand side f , the diffusion tensor
K and the domain Ω (e.g. convex) are such that the solution is smooth enough, e.g.,
u ∈ H1(Ω)2, p ∈ H1

0 (Ω) ∩H2(Ω).
This system can be interpreted as modeling an incompressible single phase flow

in a reservoir; ignoring gravitational effects. The matrix K is the mobility κ/µ, the
ratio of permeability tensor to viscosity of the fluid, u is the Darcy velocity and p the
pressure. The second equation is the Darcy law and the first represents conservation of
mass with f standing for a source or sink term. Since κ is in general discontinuous due
to different rock formations, separating the Darcy law from the second order equation
and discretizing it directly together with the mass conservation may lead to a better
numerical treatment on the velocity than just computing it from the pressure via the
Darcy law. This approach is well known in the finite element circle [20], but the same
approach can be applied in conjunction with the finite volume method (termed mixed
finite volume methods) as well [6, 9, 10, 11, 12, 20, 21]. For other similarly related
issues, see also [17, 18, 22].

Let Th = {Kj}NT
j=1 be the usual non–overlapping finite element triangulation of the

domain Ω = ∪K∈Th
K. Furthermore Th is assumed to be regular, that is,

minK∈Th
d(K)/ρ(K) ≥ C for a constant C independent of h. Here ρ(K) is the diameter

of triangle K; d(K) the diameter of the inscribed circle of K, and h = maxK∈Th
ρ(K).

We denote the area of K by |K|, by A = Ai ∪ Ab the set of all edges of Th consisting
of the interior edge set Ai and boundary edge set Ab. We use NAi and NAb to denote
the number of interior edges and the number of boundary edges, respectively. The total
number of edges is NA = NAi + NAb.

Define the lowest order Raviart-Thomas space [19]

Vh = {uh ∈ H(div; Ω) : uh|K ∈ RT0(K)}

where RT0(K) = {u = (u1, u2) : u1 = a + bx, u2 = c + by in K} and the standard P1
nonconforming finite element space

Yh = {ph|K ∈ P1(K) : ph continuous at the middle point of each e ∈ ∂K}.

Consider approximating u by uh ∈ Vh and p by ph ∈ Yh via a mixed finite volume
approach on (3):

Find (uh, ph) ∈ Vh × Yh such that
{

(∇ · uh − f, χK) = 0 for all K ∈ Th,
(uh +K∇ph, χ

K
) = 0 for all K ∈ Th

(4)

where ph = 0 at all midpoints of boundary edges. Here χK is the characteristic function
of triangle K and χ

K
is any constant vector multiple of χK .

This method was introduced and analyzed for the case ofK = I, the identity matrix,
by Courbet & Croisille [15]. In this paper we study the general full tensor case. The
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full tensor case is important in porous media flow applications since it represents the
more natural anisotropic case. Mathematically, the full tensor case is by no means a
trivial extension of the simple Poisson equation, especially in the finite volume case: the
presence of the full tensor often results in a nonsymmetric system and is harder to give
physical interpretations [1]. Furthermore, unlike in the mathematical analysis of finite
element methods, convergence of finite volume methods for the isotropic and anisotropic
cases in general cannot be handled in a unified way. See [16] and the references therein
for the difficulties involved. Also see [10, 11] where a uniform treatment is possible, but
in these co-volume schemes Chou et. al. used two grid systems in discretization. It is
therefore surprising that the extension of the Courbet & Croisille method has none of
these drawbacks, having only one grid system for both variables.

This paper is the first in a series of two papers on comparing the analysis of the
finite volume method from a finite element person’s or a “pure” finite volume person’s
viewpoint. It grows out of the informal report [13]. We will present things in an
elementary and non–terse way and the point will be how different viewpoints may lead
to the same conclusions but in a roundabout way. The reader is referred to follow-up
[14] for a more extensive and in-depth mathematical presentation.

First we adopt a pure finite volume person’s point of view. In Sec. 2, we derive the
discrete system, and in Sec. 3 we compute explicitly the element and global stiffness
matrices whose proper interpretations lead to Thm 4.1, which says that the pressure
approximation can be re–interpreted as the solution to the system of the standard
P1 nonconforming finite elements applied to the second order elliptic problem (1).
However, the process leading to that conclusion is long and technical. The advantage
in this approach is that conservation laws are obvious from the start and the drawback
is that the mathematical analysis is long and very uninspiring.

On the other hand, as shown in [8, 12, 11] it is fruitful to try to relate the analysis
of a mixed finite volume method to a close finite element method. Adopting this
viewpoint, we can prove Thm. 4.1 in a few short lines. The advantage of this approach
is that mathematical analysis is neat, but conservation law is somewhat hidden. To
keep the paper short, how to get the best of these two approaches is elucidated in the
follow-up paper [14].

The remaining of this paper is organized as follows. In Sec. 5, we show the error
estimates in p and u. Finally, in the last section we provide numerical results for both
Dirichlet and Neumann problems.

2 Problem formulation

Let us now represent the system (4) using proper basis functions. Notice that by
divergence theorem, Eq. (4)1 can be written as

∫

∂K
uh · ndx− |K|fK = 0 (5)
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where fK = 1
|K|

∫
K fdx is the average of f(x) over triangle K. Since ∇ph is constant

over K, Eq. (4)2 can be written as

∫

K
uhdx + |K|AK∇ph = 0 (6)

where the matrix AK = 1
|K|

∫
K Kdx is the average of matrix K(x) over triangle K.

Figure 1: Local elements based on an interior edge e1.

With reference to Fig. 1, let λS be the usual nodal linear basis function associated
with the vertex S of K = KL. Recall that λS is one at S and zero at other two vertices
and is also called barycentric or area coordinate function. For any ph(x) ∈ Yh, we have
the local representation on K

ph(x)|K =
∑

e∈∂K

peϕe(x) (7)

where ϕe(x) = 1− 2λS(x) is the local basis function of space Yh on edge e with λS(x)
being barycentric coordinate of x with respect to vertex S opposite to e in triangle K.
(Note that e = e1 in Fig. 1.) It is easy to see ∇ϕe(x) = |e|

|K|ne = const, where |e| is the
length of edge e.

Given any triangular element K ∈ Th, we always orient K counterclockwise as
shown in Fig. 1 (e.g. K = KL there). Then the three local basis functions associated
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with the three edges are as follows. For example, for the edge e = e1 of K = KL in
Fig. 1, we define PK,e

PK,e(x) =
1

2|K|
[

x− xS

y − yS

]
∀ (x, y) ∈ K. (8)

Note that

PK,e(x) · n =





1/|e| ∀ x ∈ e = S′S′′

0 ∀ x ∈ SS′

0 ∀ x ∈ SS′′.
(9)

The other two basis functions PK,ei , i = 2, 3 are defined similarly.
For any uh(x) ∈ Vh, we have the local representation on K

uh(x)|K =
∑

e∈∂K

uePK,e(x) (10)

where ue =
∫
e u ·nds is the flux across edge e. For any edge a ∈ Ai we define the global

canonical basis of Vh associated with edge a as follows. If the edge a corresponds to
edge S′S′′ in the local ordering (cf. Fig. 1), then

Pa(x) = PKL, e(x)χKL
(x)−PKR, e(x)χKR

(x) (11)

where a is oriented from KL towards KR. The global basis functions based on boundary
edges are defined similarly.

Finally, by Taylor’s expansion at the barycenter B of K we have on K

uh(x) = uK + (∇ · uh)KPK(x) (12)

where uK = 1
|K|

∫
K uhdx = −AK∇ph, the average of uh(x) on K, and

PK(x) =
1
2

[
x− xB

y − yB

]
=
|K|
3

∑

e∈∂K

PK,e(x) ∀ (x, y) ∈ K (13)

with (xB, yB) being the coordinates of B. Alternatively, one can also write

uh(x) = −AK∇ph + |K|fKPK(x). (14)

Note that |K|fKPK(x) has zero mean on triangle K.
Let uh ∈ Vh and ph ∈ Yh have the local representations (10) and (7), respectively.

Then for each K ∈ Th, Eq. (5) implies
∑

e∈∂K

ue − |K|fK = 0 (NT equations) (15)
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and Eq. (6) becomes

∑

e∈∂K

ue

∫

K
PK,e(x)dx + pe|K|AK∇ϕe(x) = 0.

Define Qe =
∫
K PK,e(x)dx, Ne = |e|AKne, and recall that ∇ϕe(x) = |e|

|K|ne = const to
get ∑

e∈∂K

ueQe + peNe = 0 (2NT equations). (16)

Referring to Fig. 1, we see that by the one-point quadrature using the barycenter B

Qe1 = PK,e1(B)|K| = 1/6(
−−→
SS′ +

−−→
SS′′) := 1/6(e3 − e2)

where
−−→
SS′ = e3 and

−−→
S′′S = e2. Hence

∑

e∈∂K

Qe = 0. (17)

Also note ∑

e∈∂K

Ne = AK(
∑

i

|ei|nei) = 0. (18)

On the boundary
pa = 0 (NAb equations). (19)

Clearly
3NT + NAb = 2NA. (20)

and we have as many equations as unknowns: the number of unknowns (ua, pa)a∈A
being 2NA and the total number of equations in (15), (16) and (19) being 3NT+NAb =
2NA.

Combining (15), (16) and (19), we see that system (4) becomes: Find uh =
∑

a∈A uaPa(x),
ph(x) =

∑
a∈A paϕa(x) such that





∑
e∈∂K ue = |K|fK ∀K ∈ Th,∑

e∈∂K(ueQe + peNe) = 0 ∀K ∈ Th,
pa = 0 ∀a ∈ Ab.

(21)

A remark about notation is in order here. We emphasize that the notation ua, a ∈ A
is reserved for the component with respect to the global basis whereas the notation
uK,e, e ∈ ∂K is the component with respect to the local basis. When there is no danger
of confusion we simply use ue instead of uK,e. Later in sec. 5, we shall show the
existence and uniqueness of the above system.
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3 Element and global stiffness matrices

In this section we shall work out the details of implementation of the resulting discrete
systems.

Denote by U = (ua)a∈A the global vector of uh(x) onto basis {Pa(x)} and P =
(pa)a∈A the global vector of ph(x) onto basis {ϕa(x)}. Also define UK and PK to be
the local vectors of uh(x) and ph(x) onto local basis functions in the triangle K

UK = [ue1 , ue2 , ue3 ]
T , (22)

PK = [pe1 , pe2 , pe3 ]
T (23)

where e1, e2 and e3 are three edges of K.
Then system (21) can be written as:

L̄KUK + M̄KPK = F̄K ∀K ∈ Th (24)

where L̄K , M̄K ∈ R3×3, F̄K ∈ R3 with

L̄K =
[

1 1 1
Qe1 Qe2 Qe3

]
=

[
1 1 1

1
6(e3 − e2) 1

6(e1 − e3) 1
6(e2 − e1)

]
,

M̄K =
[

0 0 0
Ne1 Ne2 Ne3

]
=

[
0 0 0

|e1|AKne1 |e2|AKne2 |e3|AKne3

]
,

F̄K =




|K|fK

0
0


 .

We know that the matrix L̄K is nonsingular by (17) and hence (24) can be rewritten
as

UK = FK −MKPK ∀K ∈ Th (25)

where MK = L̄−1
K M̄K and FK = L̄−1

K F̄K . It is easy to check

FK =
|K|
3

fK




1
1
1


 . (26)

We can eliminate the unknowns (ua)a∈A to obtain a system in the pressures alone.
If a is an interior edge with orientation from KL(a) towards KR(a), a = eL in KL(a),
a = eR in KR(a), then the continuity of the flux across a gives the identity UKL,eL

=
−UKR,eR

holds. (Here UKL,eL
means the component of UKL

in (22) corresponding to
the edge eL.) Thus we have the (scalar) identity

[MKL
PKL

]eL + [MKR
PKR

]eR = FKL,eL
+ FKR,eR

∀a ∈ Ai. (27)
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This assembly along with pa = 0 for all a ∈ Ab then gives rise to an NA×NA linear
system in the unknown P = (pa)a∈A

MP = F . (28)

We denote Pi ∈ RNAi , Fi ∈ RNAi , and Mi ∈ RNAi×NAi the sub-vectors or
submatrix of P,F and M corresponding to interior edge set Ai. The resulting system is
MiPi = Fi. Next, we will give a simple form of local stencil MK which is a symmetric
positive matrix. Then we will introduce a way to assemble global stiffness matrix Mi

from local stencil MK . Finally we show that the matrix Mi is symmetric positive
definite.

Lemma 3.1 The local stencil MK is symmetric positive semi-definite.

Proof 1 Let us compute L̄−T
K first. Referring to the notation in Fig. 1, we have

L̄T
K =




1 1/6(e3 − e2)T

1 1/6(e1 − e3)T

1 1/6(e2 − e1)T


 .

Using the fact e1 + e2 + e3 = 0 and elementary geometry, we can easily see that

L̄−T
K =

[
1
3

1
3

1
3|e1|

|K|ne1

|e2|
|K|ne2

|e3|
|K|ne3

]

where nei are the unit outward normal to ei. Thus MK = L̄−1
K M̄K has entries

(MK)ij =
|ei‖ej |
|K| nT

ei
AKnej =

|ei‖ej |
|K| nT

ej
AKnei = (MK)ji

and hence MK is symmetric.
Now let R(θ) be the rotation matrix through an angle of θ, then

nei = R(−π
2 )ei/|ei| and so

(MK)ij =
1
|K|ei

T ÃKej (29)

where

ÃK =
[

c −b
−b a

]
if AK =

[
a b
b c

]
. (30)

Next we show MK is positive semi-definite. Denote E = [e1, e2, e3], then

MK =
1
|K|E

T ÃKE. (31)
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and

ξT MKξ =
1
|K|ξ

T ET ÃKEξ =
1
|K|ξ

T ET R(−π

2
)TAKR(−π

2
)Eξ

≥ α1
1
|K| |R(−π

2
)Eξ|2 = α1

1
|K| |Eξ|2.

Therefore MK is positive semi-definite.

Remark: Note if we take AK = I, from (29) a simple computation shows that

MK = 2




d2 + d3 −d3 −d2

−d3 d1 + d3 −d1

−d2 −d1 d1 + d2




where di = cot θi, where θi is the angle opposite to the edge ei. It is 4 times the local
stencil in the standard FVM for Poisson problem. (see [3] ) and same as that of the
mixed covolume scheme. (see [14])

Now let I := {1, 2, . . . , NAi} be a global ordering of the interior edges in Ai, and
for l = 1, . . . , NT, let {1, 2, 3} be a local ordering of the edges of triangular element
K(l). We use g

(l)
j to denote the global edge number of the edge in element K(l) that

has local edge number j. Also we use the notation M (l) for the local stencil MK when
K = K(l). Suppose that a ∈ Ai is the intersection of two elements K(l) and K(m) with
orientation from K(l) to K(m). Let a = e

(m)
s on K(m) and a = e

(l)
t where s and t are

the local edge numbers. Now let KL = K(l) and KR = K(m) in (27), then its left hand
side can be expressed as

LHS =
3∑

j=1

m
(l)
tj p

g
(l)
j

+
3∑

j=1

m
(m)
sj p

g
(m)
j

(32)

in terms of pressures pr, r ∈ I (globally indexed) and the entries m
(l)
tj of the three by

three matrix M (l) and so on. The above suggests we define a global matrix for each
element as follows. For each l, 1 ≤ l ≤ NT define the matrix M̂ (l) = M̂K ∈ RNAi×NAi

associated with K = K(l) so that m̂
(l)
ij = 0 if the (global) edges i and j are not in

K(l). Otherwise we set m̂
(l)
ij = m

(l)
st where i = g

(l)
s and j = g

(l)
t . Obviously, M̂K is a

symmetric matrix since MK is.
We can now write (32) in terms of this new matrix and global indices. It is then

not hard to conclude that

Mi =
∑

K∈Th
M̂K , (33)

Fi =
∑

K∈Th
F̂K . (34)
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In fact, let α ∈ I and the edge eα = a = K(l) ∩K(m). then

 ∑

K∈Th

M̂KPi




α

=
NAi∑

β=1

NT∑

k=1

m̂
(k)
αβ (pi)β

=
NAi∑

β=1

{
m̂

(l)
αβ(pi)β + m̂

(m)
αβ (pi)β

}

=
3∑

j=1

m
(l)
tj (pi)g

(l)
j

+ m
(m)
sj (pi)g

(m)
j

= (MiPi)α. (35)

Hence Mi is symmetric. Moreover

P T
i MiPi =

∑

K∈Th

P T
i M̂KPi =

∑

K∈Th

P T
KMKPK . (36)

So from Lemma (3.1), we have P T
i MiPi ≥ 0. Later in Theorem 5.2 we will show the

uniqueness of solution for the system (21). Therefore we obtain the following theorem:

Theorem 3.1 The global stiffness matrix Mi corresponding to the interior edge set
Ai is symmetric positive definite.

Algorithm:
do for each K ∈ Th

evaluate ÃK , fK

evaluate MK by (29), FK by (26)
assemble MK to Mi, FK to Fi

enddo
solve MiPi = Fi

evaluate U from (25), with boundary condition.

4 a Mixed box method is a FEM plus local flux recovery

In this section we first prove in Thm. 4.1 equivalence between the pressure approxi-
mation in our box method and a P1 nonconforming finite element method applied to
the elliptic problem (1) with a modified right hand side. Then we show this leads to
a better understanding of the box method. It turns out that the mixed box method
is nothing but a standard FEM with accurate local recovery of the flux. This is the
content of Thm. 4.2 with zero absorption.
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Throughout the rest of this paper, we use the standard notation W 1,p for the usual
Sobolev spaces and | · |m,K , ‖ · ‖m,K for the semi and full Hm–norm, m = 0, 1, 2. We
omit the subscript K when K = Ω and sometimes use ‖ · ‖ when writing an L2 norm.
Also | · |H(div;Ω) is the H(div; Ω) semi-norm.

We now show the equivalence theorem.

Theorem 4.1 The linear system (28) is the same as the discrete system resulting from
the standard P1 nonconforming FEM : Find ph ∈ Yh,0 such that

ah(ph, qh) = (fh, qh) ∀qh ∈ Yh,0 (37)

where fh = Phf is the L2 projection to the piecewise constant space Lh.

Proof 2 It suffices to show the two methods have the same element stiffness matrix
and the same right hand side. The element stiffness matrix associated with element K
from (41) can be obtained as follows. Let ϕi = 1 − 2λi, i = 1, 2, 3 with λi being the
barycentric coordinates. Noting that ∇ϕi = |Mei|

|K| ni, we have

∫

K
(K∇ϕi) · ∇ϕjdx =

∫

K
(K |ei|
|K|ni) · |ej |

|K|njdx

=
|ei|
|K|n

T
i (

∫

K
Kdx)

|ej |
|K|nj

=
1
|K| |ei|nT

i AK |ej |nj

=
1
|K|e

T
i ÃKej

which is exactly (29).
Since fh = Phf , the L2 projection, fh|K = 1

|K|
∫
K f . Thus

(fh, ϕj) =
∫

K
fhϕjdx

=
fh|K |K|

3

=
|K|fK

3

which is exactly (26). This completes the proof.

Remark. We must emphasize this theorem is proved because of the hard work in the
previous sections. Our line of thinking follows that of [15]. In other words, we try to
generalize their method to the anisotropic case, but our crucial new observation is the
above theorem. It says the mixed finite volume method is related to a finite element
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method. The next theorem says the hard work in the previous sections can be avoided
altogether if we have a change of viewpoint.

To bring out an important difference between the mixed box method(finite vol-
ume) method and the finite element method, we will do more and actually show the
equivalence theorem for the original problem (1) with an added absorption term i.e.,

{ −∇ · K∇p + α0p = f in Ω,
p = 0 on ∂Ω,

, (38)

where α0 is a nonnegative piecewise constant function with respect to Th. The associ-
ated weak formulation is to find p ∈ H1

0 such that

a(p, q) = (f, q) ∀q ∈ H1
0 (39)

where
a(p, q) :=

∫

Ω
(K∇p) · ∇q + α0pqdx. (40)

Let

Yh,0 := {q ∈ L2(Ω) : q|K ∈ P1(K), ∀K ∈ Th; q is continuous at the midpoints
of interior edges and vanishes at the midpoints of boundary edges}.

The standard P1 nonconforming FEM discretization is : Find p̃h ∈ Yh,0 such that

ah(p̃h, qh) = (f, qh) ∀qh ∈ Yh,0 (41)

where

ah(p̃h, qh) :=
NT∑

j=1

(K∇p̃h,∇qh)Kj + (α0ph, qh)Kj , (42)

where (·, ·)K is the L2 inner product on K. Define the semi-norm

|q|h := (
∑

K∈Th

|q|21,K)1/2 ∀q ∈ H1
0 ⊕ Yh,0. (43)

It is clear | · |h is a full norm on space Yh,0 in Dirichlet Case. It is well known [7, 4, 5]
that the solution ph of system (41) converges to solution p of system (39) : there exists
a constant C independent of h such that

‖p− p̃h‖0 + h|p− p̃h|h ≤ Ch2‖p‖2 (44)

provided that the problem data is smooth enough so that the elliptic regularity estimate
‖p‖2 ≤ C‖f‖0 holds. For example, if f ∈ L2 and K ∈ C1(Ω̄) on a convex domain Ω,
then p ∈ H2 is guaranteed. (See p. 4 of [4] and the references therein.) We now show
the equivalence theorem.
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Theorem 4.2 Consider the problem of finding (uh, ph) ∈ Vh × Yh,0 such that

(K∇ph,∇qh) +
∑

K

αK(pK , qh)K = (fh, qh) ∀qh ∈ Yh,0 (45)

and over each K in Th

uh = −AK∇ph + (fK − αKpK)PK (46)

where fh = Phf is the L2 projection to the piecewise constant space Lh and pK =
1
|K|

∫
K phdx, fK = 1

|K|
∫
K fdx = fh|K along with the mixed box method of finding

(uh, ph) ∈ Vh × Yh,0 such that

(∇ · uh + α0ph − f, χK) = 0, (47)
(uh +K∇ph, χ

K
) = 0. (48)

Then the two above problems are equivalent.

Proof 3 We first show that (45)–(46) implies (47)–(48).
Take divergence on (46), recall (13), and integrate against the characteristic function

χK to see (46) implies (47). Now integrate (46) against χK and use the fact (PK , χ
K

) =
0(one point quadrature rule using the barycenter B) to get (48).

Secondly, we prove that (47)–(48) implies (45)–(46).
¿From (47) we see that on K

∇ · uh = fK − αKpK .

Since uh ∈ Vh, by Taylor’s expansion

uh = uK +
1
2
∇ · uh(x− xB),

where uK = 1
|K|

∫
K uhdx = −AK∇ph by (48). So

uh = −AK∇ph + (fK − αKpK)PK

which is (46). On the other hand by (48), integration by parts and (47)
∑

K

(K∇ph,∇qh)K =
∑

K

(−uh,∇qh)K

=
∑

K

(∇ · uh, qh)K − (uh · n, qh)∂K

=
∑

K

(fK − αKpK , qh)

which is (45). Notice that the (·, ·)∂K terms cancelled upon summation since uh ·n and
qh are continuous at midpoints of edges.
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Remark. One notes that the mixed finite volume method is equivalent to the standard
nonconforming method (with a modified right hand side) when there is no absorption
term (α0 = 0). In the presence of the absorption term, the mixed method is equiv-
alent to a nonconforming method with the absorption term evaluated by a one-point
quadrature at the element barycenter. The approximate ph so produced by (45) gener-
ates automatically a flux with continuous normal components across edges via (46). In
other words, the usual nonconforming method does not produce continuous flux unless
α0 = 0.

5 Error estimates

In this section we will prove the existence and uniqueness of solution for the system
(21) and some error estimates in an energy norm. Through this section the letter C
denotes a generic positive constant, independent of h and not necessarily the same in
each occurrence. Let us define two energy norms which by (2) are equivalent:

|q|2h =
∑

K

|q|2h,K :=
∑

K

∫

K
|∇q|2dx ∀q ∈ H1(Ω)⊕ Yh.

|q|2E =
∑

K

|q|2E,K :=
∑

K

∫

K
∇qTK(x)∇qdx ∀q ∈ H1(Ω)⊕ Yh.

The next lemma shows they are actually full norms on the space Yh,0 = {qh ∈ Yh, qh =
0 at all midpoints of boundary edges}.

Lemma 5.1 The discrete energy semi-norm |qh|h is a norm on the space Yh,0.

Proof 4 Let qh ∈ Yh,0 such that |qh|h = 0. The gradient of qh is zero in each cell
K ∈ Th. Hence qh is constant in each cell K. Since qh is continuous at the middle point
of each edge e of Th and qh = 0 on ∂Ω, we have qh = 0 in Ω.

The next theorem shows the existence and uniqueness of solution for system (21).

Theorem 5.1 The discrete system (21) has a unique solution (uh, ph) ∈ Vh × Yh,0

Proof 5 Since the number of unknowns equals the number of equations in (21) we only
need to show that uh = 0 and ph = 0 when f = 0.

By Thm. 4.1 or 4.2 and the preceding lemma ph = 0 when f = 0. On the other
hand, uh = uK = −AK∇ph = 0.

Also we have the following stability condition:
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Lemma 5.2 If (uh, ph) ∈ Vh × Yh,0 is the solution of system (21), then there exist
positive constants C1 and C2, independent of h, such that

C1|ph|h ≤ ‖uh‖0,Ω ≤ C2(|ph|h + h‖f‖0,Ω) (49)

|uh|h :=

(∑

K

‖∇uh‖2
0,K

)1/2

≤ 1√
2
‖f‖0,Ω (50)

Proof 6 We first show (50). From (14)∇uh = |K|fK∇PK(x) and from (13) ‖∇PK‖2
0,K =

1
2|K| , so

|uh|2h =
∑

K

‖∇uh‖2
0,K =

∑

K

|K|2|fK |2‖∇PK‖2
0,K

≤ 1/2
∑

K

|K| |fK |2 ≤ 1/2‖f‖2
0,Ω

and we obtain (50).
Next we show (49). By the linearity of ph, bounds (2) on AK , and the Cauchy-

Schwarz inequality, we get

|ph|2h =
∑

K

∫

K
|∇ph|2dx =

∑

K

|K||∇ph|2

=
∑

K

|K|(A−1
K uK)T (A−1

K uK) ≤ C
∑

K

|K|uT
KuK

≤ C
∑

K

∫

K
|uh(x)|2dx = C‖uh‖2

0,Ω,

whence
C1|ph|h ≤ ‖uh‖0,Ω.

Again by (14), bound (2) on AK ,

‖uh‖0,K ≤ ‖AK∇ph‖0,K + |K| |fK | ‖PK‖0,K

= (
∫

K
∇pT

hA2
K∇ph dx)1/2 + |K| |fK | ‖PK‖0,K

≤ C‖∇ph‖0,K + |K| |fK | ‖PK‖0,K

= C|ph|h,K + |K| |fK | ‖PK‖0,K

¿From (13) we have

‖PK‖2
0,K =

1
4|K|2

∫

K
(x− xB)2 + (y − yB)2dxdy

≤ h2
K

4|K| .
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By the regularity assumption on the triangulations we know hK/|K|1/2 ≤ C for all
K. Also notice |fK | ≤ ‖f‖0,K/|K|1/2, we obtain

‖uh‖0,K ≤ C(|ph|h,K + |K|1/2‖f‖0,K) ≤ C(|ph|h,K + h‖f‖0,K).

Summing over K, we get

‖uh‖0,Ω ≤ C(|ph|h + h‖f‖0,Ω).

This completes the proof.

Our main result in this section is the following error estimate theorem.

Theorem 5.2 Let the problem data of (1) be smooth enough so that the pressure
solution p ∈ H2∩H1

0 and u(x) = −K(x)∇p(x) ∈ H1(Ω)2. Then there exists a constant
C independent of h such that

‖p− ph‖0 ≤ Ch2(|f |h + ‖f‖0), if f |K ∈ H1(K) ∀K ∈ Th, (51)
|p− ph|h ≤ Ch‖f‖0 (52)
‖u− uh‖0 ≤ Ch(‖f‖0 + ‖u‖0) (53)

|u− uh|H(div;Ω) ≤ Ch|f |h if f |K ∈ H1(K) ∀K ∈ Th. (54)

Also we assume that K ∈ W 1,∞.

Remark. Note that the condition of the function f ∈ H1(K) for all K can be satisfied
if we impose it on the coarsest mesh in the context of local refinement.

Proof 7 i) proof of (51) and (52). First we show that

‖p̃− p‖0 ≤ Ch2|f |h
where p̃ ∈ H1

0 is the solution of a(p̃, q) = (fh, q) ∀q ∈ H1
0 and p is the solution of

a(p, q) = (f, q) ∀q ∈ H1
0 . Subtracting these two bilinear forms, we get

a(p− p̃, q) = (f − fh, q) ∀q ∈ H1
0 .

Noticing that
∫
K f − fhdx = 0, we have (f − fh, q)K = (f − fh, q − qh)K where qh|K =

1
|K|

∫
K qdx is constant on each K. Then by the Cauchy–Schwarz inequality and an

interpolation theorem, we have

|(f − fh, q − qh)| = |
∑

K

(f − fh, q − qh)K | (55)

≤ Ch2
∑

K

|f |1,K |q|1,K

≤ Ch2|f |h|q|1
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Thus
|a(p− p̃, q)| ≤ Ch2|f |h|q|1.

Taking q = p− p̃ and using the coercivity of a(·, ·), we have

|p− p̃|21 ≤ Ch2|f |h|p− p̃|1

and hence
|p− p̃|1 ≤ Ch2|f |h. (56)

By the Poincaré inequality, we get

‖p− p̃‖0 ≤ Ch2|f |h. (57)

Now note that ph ∈ Yh,0 is the solution of the nonconforming method

ah(ph, qh) = (fh, qh) ∀qh ∈ Yh,0

associated with the variational problem of finding p̃ ∈ H1
0 such that

a(p̃, q) = (fh, q) ∀q ∈ H1
0 .

(The right hand side contains fh instead of f !) Hence

||ph − p̃||0 + h|p̃− ph|h ≤ Ch2||p̃||2, (58)

where we have applied (44) with the right side fh and all the remarks concerning
regularity of the solution made there then also apply here.

Now by the triangle inequality, (57), (58), the stability condition and the fact that
fh is the L2 projection of f , we have

||ph − p||0 ≤ ||ph − p̃||0 + ||p̃− p||0
≤ Ch2||p̃||2 + Ch2|f |h
≤ Ch2||fh||0 + Ch2|f |h
≤ Ch2||f ||0 + Ch2|f |h.

This completes the proof of (51).
As for the proof of (52), first note that from (55) we can use the fact that ‖f −

fh‖0,K ≤ ‖f‖0,K and an interpolation theorem to obtain

|(f − fh, q − qh)| ≤ Ch
∑

K

‖f‖0,K |q|1,K

≤ Ch‖f‖0|q|1
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and consequently instead of (56) we have |p̃− p|1 ≤ Ch‖f‖0; arguing as before. Now

|ph − p|h ≤ |ph − p̃|h + |p̃− p|h
≤ Ch||p̃||2 + Ch‖f‖0.

≤ Ch||f ||0,

ii) proof of (53).
From (14) we have

uh(x)− u(x)|K = −AK∇ph +K(x)∇p + |K|fKPK(x).

So
‖uh − u‖0,K ≤ ‖AK∇ph −K(x)∇p‖0,K + |K| |fK | ‖PK‖0,K ,

and since |K| |fK | ‖PK‖0,K ≤ Ch‖f‖0,K as shown in Lemma 5.2 we have

‖uh − u‖0,K ≤ ‖AK∇ph −K(x)∇p‖0,K + Ch‖f‖0,K

whereas by the triangle inequality and the interpolation theorem

‖AK∇ph − K∇p‖0,K ≤ ‖AK∇ph −K∇ph‖0,K + ‖K∇ph −K∇p‖0,K

= (∇pT
h

∫

K
(AK −K)2dx∇ph)1/2 + (

∫

K
|K(∇ph −∇p)|2dx)1/2

≤ Ch|ph|h,K |K|1,∞,K + C|ph − p|E,K

≤ Ch‖uh‖0,K + C|ph − p|E,K

≤ C{h‖u− uh‖0,K + h‖u‖0,K + C|ph − p|E,K}

where we have used the stability (49) restricted on K as shown in its proof. Now taking
h small enough to move the first term on the right side we have

‖uh − u‖0,K ≤ C{|ph − p|E,K + h‖u‖0,K + h‖f‖0,K}.

Summing over K and using (52) we have

‖uh − u‖0 ≤ Ch(‖f‖0 + ‖u‖0).

iii) proof of (54).
By (4)1, ∇ · uh(x) = fK and hence

‖∇ · uh −∇ · u‖0,K = ‖f − fK‖0,K ≤ Ch|f |1,K (59)

where an interpolation theorem is used. Summing over K, we get

|u− uh|H(div;Ω) ≤ ‖∇ · uh −∇ · u‖0,Ω ≤ Ch|f |h.
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6 Numerical Examples

Notice that the the error estimate theorem and the algorithm are valid for both Dirichlet
and Neumann problems. We present numerical results for both cases. We partition
the unit square [0, 1] × [0, 1] into squares evenly in both directions with the diagonals
running from the upper-left corner of each triangle to its lower-right corner. We use
the incomplete LU preconditioned conjugate gradient method to solve all the problems.
The integral of f over element K is computed by the midpoint rule using the three
edges of the triangle. Our experiments suggest second order approximation in all cases.
The discrete norms in which the errors are estimated are as follows.

6.1 Choice of discrete norms

In Thm. 5.2 we predicted first order convergence in the H(div; Ω) norm for flux u and
second order convergence in the L2 norm for the pressure p. We need to choose proper
discrete norms to measure the error between true solution and computed solution.

Let (xi, yj) be the center of square (i, j) with xi = (i − 1/2)h, yj = (j − 1/2)h,
h = 1/n, i, j = 1, 2, . . . , n. Let pij be the computed pressure at (xi, yj). We define

pErr abs = ‖p− ph‖ :=




n∑

i,j=1

h2(p(xi, yj)− pij)2




1
2

,

i.e. a discrete L2–norm of the error p− ph.
Due to (59), the H(div; Ω)–seminorm of the error in the flux is directly related to

f − fK , and so for the flux we will use only an equivalent L2 discrete norm:

uErr abs = ‖u− uh‖ :=

[∑

K

(
∫

∂K
[(u− uh) · n] ds)2

]1/2

where the edge integrals are evaluated by the midpoint rule [11]. (Note that the x
components are picked out by the vertical edges, the y components by the horizontal
edges, etc..)

We also compute the relative error

pErr rel := pErr abs/‖p‖

and

uErr rel := uErr abs/‖u‖.
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6.2 Dirichlet problems

We consider the following Dirichlet problem

{ −∇ · K∇p = f in Ω,
p = 0 on ∂Ω.

(60)

In examples 1–4, the true pressure is p = (x2 − x)(y2 − y) on the unit square.
Example 1. The mobility tensor K = diag(1 + 10x2 + y2, 1 + x2 + 10y2).

Table 1: Error behavior for Dirichlet problem
Example 1. h = 1/16 h = 1/32 h = 1/64 h = 1/128 order
pErr abs 8.7748e-5 2.2318e-5 5.6041e-6 1.4026e-6 ≈ 2
pErr rel 0.0026 6.6952e-4 1.6812e-4 4.2077e-5 ≈ 2
uErr abs 0.0113 0.0029 7.1931e-4 1.8029e-4 ≈ 2
uErr rel 0.0086 0.0021 5.1929e-4 1.2905e-4 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

Example 2. The mobility tensor K = diag(104, 1).

Table 2: Error behavior for Dirichlet problem
Example 2. h = 1/16 h = 1/32 h = 1/64 h = 1/128 order
pErr abs 9.1815e-5 2.3286e-5 5.8558e-6 1.4657e-6 ≈ 2
pErr rel 0.0028 6.9859e-4 1.7567e-4 4.3971e-5 ≈ 2
uErr abs 8.0759 2.0653 0.5218 0.1311 ≈ 2
uErr rel 0.0057 0.0014 3.5417e-4 8.8436e-5 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

Example 3. In this example, we study the effect of discontinuous mobility matrix K.
Let

K =
[

10000 0
0 1

]
on the left half unit square, and K =

[
1 0
0 2

]
on the right half unit

square. We find the approximation is as good as continuous cases.

Example 4. Let K =
[

1 + 10x2 + y2 1/2 + x2 + y2

1/2 + x2 + y2 1 + x2 + 10y2

]
.
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Table 3: Error behavior for Dirichlet problem
Example 3. h = 1/16 h = 1/32 h = 1/64 h = 1/128 order
pErr abs 1.6425e-4 4.1581e-5 1.0439e-5 2.6128e-6 ≈ 2
pErr rel 0.0049 0.0012 3.1317e-4 7.8382e-5 ≈ 2
uErr abs 6.2337 1.5882 0.4005 0.1005 ≈ 2
uErr rel 0.0062 0.0015 3.8441e-4 9.5877e-5 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

Table 4: Error behavior for Dirichlet problem
Example 4. h = 1/16 h = 1/32 h = 1/64 h = 1/128 order
pErr abs 1.4595e-4 3.7458e-5 9.4305e-6 2.3620e-6 ≈ 2
pErr rel 0.0044 0.0011 2.8292e-4 7.0861e-5 ≈ 2
uErr abs 0.0168 0.0043 0.0011 2.7533e-4 ≈ 2
uErr rel 0.0114 0.0028 7.0927e-4 1.7784e-4 ≈ 2

Length of P 736 3,008 12,160 48,896
Length of U 736 3,008 12,160 48,896

6.3 Neumann problems

{ −∇ · K∇p = f in Ω,
K∇p · n = 0 on ∂Ω.

(61)

Example 5. The true pressure is p = cos(2πx) cos(2πy) and K = diag(cos(2πy) +
2, cos(2πx) + 2).

Table 5: Error behavior for Neumann problem
Example 5. h = 1/16 h = 1/32 h = 1/64 h = 1/128 order
pErr abs 0.0110 0.0028 6.9570e-4 1.7399e-4 ≈ 2
pErr rel 0.0221 0.0056 0.0014 3.4798e-4 ≈ 2
uErr abs 0.1383 0.0353 0.0089 0.0022 ≈ 2
uErr rel 0.0101 0.0026 6.4814e-4 1.6226e-4 ≈ 2

Length of P 800 3,136 12,416 49,408
Length of U 800 3,136 12,416 49,408

Example 6. The true (oscillatory) pressure is p = cos(2πx) cos(10πy) and K = I.
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Table 6: Error behavior for Neumann problem
Example 6. h = 1/16 h = 1/32 h = 1/64 h = 1/128 order
pErr abs 0.0441 0.0130 0.0034 8.4912e-4 ≈ 2
pErr rel 0.0882 0.0260 0.0067 0.0017 ≈ 2
uErr abs 4.1789 1.1274 0.2882 0.0725 ≈ 2
uErr rel 0.1845 0.0498 0.0127 0.0032 ≈ 2

Length of P 800 3,136 12,416 49,408
Length of U 800 3,136 12,416 49,408
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