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MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF

BLOCH SPACE

Songxiao Li, Zengjian Lou, and Conghui Shen

Abstract. Let M(X,Y ) denote the space of multipliers from X to Y,
where X and Y are analytic function spaces. As we known, for Dirichlet-

type spaces Dpα, M(Dpp−1,D
q
q−1) = {0}, if p 6= q, 0 < p, q < ∞. If

0 < p, q < ∞, p 6= q, 0 < s < 1 such that p + s, q + s > 1, then

M(Dpp−2+s,D
q
q−2+s) = {0}. However, X ∩ Dpp−1 ⊆ X ∩ Dqq−1 and X ∩

Dpp−2+s ⊆ X ∩ Dqq−2+s whenever X is a subspace of the Bloch space

B and 0 < p ≤ q < ∞. This says that the set of multipliers M(X ∩
Dpp−2+s, X∩D

q
q−2+s) is nontrivial. In this paper, we study the multipliers

M(X ∩ Dpp−2+s, X ∩ D
q
q−2+s) for distinct classical subspaces X of the

Bloch space B, where X = B, BMOA or H∞.

1. Introduction

Let D denote the unit disk of the complex plane C and ∂D be the boundary
of D, the unit circle. Denote by H(D) the space of all analytic functions in D.
The Bloch space B, consists of those f ∈ H(D) for which

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| <∞.

Let f ∈ H(D). For 0 < p <∞, 0 < r < 1, set

Mp
p (r, f) =

1

2π

∫ 2π

0

|f(reiθ)|pdθ

and
M∞(r, f) = sup

|z|=r
|f(z)|.

The Hardy space Hp(0 < p ≤ ∞) is defined as the space of f ∈ H(D) such that

‖f‖Hp = sup
0<r<1

Mp(r, f) <∞.
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For the theory about the Hardy space Hp, we refer the readers to [6]. The
BMOA space is the set of those f ∈ H1 whose boundary values have bounded
mean oscillation on the unit circle ∂D [10]. It is well known that BMOA is
contained in the Bloch space B continuously.

The weighted Dirichlet-type space Dpα(0 < p < ∞, α > −1) is the class of
all f ∈ H(D) such that

‖f‖pDpα = |f(0)|p +

∫
D
|f ′(z)|pdAα(z) <∞,

here dAα(z) = (α + 1)(1 − |z|2)αdA(z) and dA(z) = 1
πdxdy is the normalized

Lebesgue area measure. It is well known that when p < α+ 1, Dpα = Apα−p, the
Bergman space [7]. If p > α+ 2, then Dpα ⊆ H∞. Therefore, when α+ 1 ≤ p ≤
α+ 2, Dpα is a proper Dirichlet-type space. The spaces Dpp−1 are closely related

with Hardy spaces. In fact, D2
1 = H2. Notice that when 0 < p ≤ 2, Dpp−1 ⊆ Hp

[7]. When 2 ≤ p <∞, Hp ⊆ Dpp−1 [14].

For g ∈ H(D), the multiplication operator Mg is defined by

Mgf(z) = g(z)f(z), z ∈ D, f ∈ H(D).

Let X,Y be the norm spaces of analytic functions in D. We denote by M(X,Y )
the space of multipliers from X to Y, in other words,

M(X,Y ) = {g ∈ H(D) : fg ∈ Y, ∀f ∈ X}.
For convenience, we write M(X) := M(X,X). Denote the norm of the multi-
plication operator Mg by ‖Mg‖. From [2,3], we see that

M(B) = H∞ ∩ Blog.(1)

Here Blog is the logarithmic Bloch space, consists of those f ∈ H(D) for which

‖f‖Blog
= |f(0)|+ sup

z∈D
(1− |z|2)|f ′(z)|

(
log

2

1− |z|2

)
<∞.

In [15], we have that

M(BMOA) = BMOAlog ∩H∞,(2)

where BMOAlog is the space of those functions f ∈ H1 such that the positive
Borel measure (1 − |z|2)|f ′(z)|2dA(z) is a 2-logarithmic Carleson measure. In
other words, f ∈ BMOAlog if and only if f ∈ H1 such that

sup
a∈D

(
log

2

1− |a|

)2 ∫
D
|f ′(z)|2(1− |ϕa(z)|2)dA(z) <∞,

where ϕa is the disk automorphism which interchange the origin and a, that is

ϕa(z) =
a− z
1− āz

, z ∈ D.(3)

The multipliers of Dirichlet-type space Dpα have been studied in [8,9,11,12]. In
[8], the authors proved that for 1 < p ≤ q < ∞, a function g ∈ H(D) belongs
to M(Dpp−2,D

q
q−2) if and only if g ∈ H∞ and the positive Borel measure µ
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defined by dµ(z) = |g′(z)|q(1−|z|2)q−2dA(z) is a q-Carleson measure for Dqq−2.

If 1 < q < p <∞, then M(Dpp−2,D
q
q−2) = {0}.

It is standard that if 0 < p, q <∞ and p 6= q, then we have

M(Dpp−1,D
q
q−1) = {0}.

Let X be a non-zero subspace of the Bloch space B. The space X ∩ Dpα is
equipped with the norm

‖f‖X∩Dpα = ‖f‖X + ‖f‖Dpα .

Lemma 1 in [5] says that if 0 < p ≤ q < ∞, then X ∩ Dpp−1 ⊆ X ∩ Dqq−1. It

follows that the set of multipliers M(X ∩ Dpp−1, X ∩ D
q
q−1) is nontrivial.

By Corollary 1 in [12] and Theorem 2 in [9], for all p 6= q and 0 < s < 1,

M(Dpp−2+s,D
q
q−2+s) = {0}.

But when 0 < p ≤ q <∞, if f ∈ X ∩ Dpp−2+s, then∫
D
|f ′(z)|q(1− |z|2)q−2+sdA(z) ≤ ‖f‖q−pB

∫
D
|f ′(z)|p(1− |z|2)p−2+sdA(z)

≤ ‖f‖q−pB ‖f‖pDpp−2+s

≤ C‖f‖q−pX ‖f‖pDpp−2+s

≤ C‖f‖q
X∩Dpp−2+s

.

Hence f ∈ X ∩ Dqq−2+s and ‖f‖X∩Dqq−2+s
≤ C‖f‖X∩Dpp−2+s

. In other words,

X∩Dpp−2+s ⊆ X∩D
q
q−2+s. So the set of multipliers M(X∩Dpp−2+s, X∩D

q
q−2+s)

is also nontrivial.
From [5], we see that if q > 1 and 0 < p ≤ q <∞, then

M(B ∩ Dpp−1,B ∩ D
q
q−1) = M(B)

and

M(BMOA ∩ Dpp−1, BMOA ∩ Dqq−1) = M(BMOA).

If 0 < p ≤ q <∞, then

M(H∞ ∩ Dpp−1,H∞ ∩ D
q
q−1) = H∞ ∩ Dqq−1.

Motivated by [8] and [5], it is natural to ask what is the set of multipliers
M(X∩Dpp−2+s, X∩D

q
q−2+s) when 0 < s < 1. In this paper, we characterize the

multipliers M(X ∩Dpp−2+s, X ∩D
q
q−2+s) when 0 < s < 1, X = B, X = BMOA

or X = H∞, respectively. Our main results are stated as follows.

Theorem 1.1. Suppose that g ∈ H(D), 0 < p ≤ q < ∞, 0 < s < 1 satis-
fying p + s > 1. Define the positive Borel measure µ by dµ(z) = |g′(z)|q(1 −
|z|2)q−2+sdA(z), then

(i) g ∈ M(B ∩ Dpp−2+s,B ∩ D
q
q−2+s) if and only if g ∈ M(B) and µ is a

q-Carleson measure for B ∩ Dpp−2+s.
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(ii) g ∈M(BMOA ∩ Dpp−2+s, BMOA ∩ Dqq−2+s) if and only if

g ∈M(BMOA) and µ is a q-Carleson measure for BMOA∩Dpp−2+s.

(iii) M(H∞ ∩ Dpp−2+s,H∞ ∩ D
q
q−2+s) = H∞ ∩ Dqq−2+s.

Theorem 1.2. Suppose 0 < q < p <∞, 0 < s < 1 with q + s > 1. Then
(i) M(B ∩ Dpp−2+s,B ∩ D

q
q−2+s) = {0}.

(ii) M(BMOA ∩ Dpp−2+s, BMOA ∩ Dqq−2+s) = {0}.
(iii) M(H∞ ∩ Dpp−2+s,H∞ ∩ D

q
q−2+s) = {0}.

Throughout this paper, C denotes a positive constant depending only on
indexes p, q, s, . . . , it is not necessary to be the same from one line to another.
Let f and g be two positive functions. For convenience, we write f � g, if
f ≤ Cg holds, where C is a positive constant independent of f and g. If f � g
and g � f, then we say f � g.

2. Preliminary

In this section, we state some definitions and lemmas which will be used in
the paper. Let I be an arc of ∂D. Denote the normalized Lebesgue measure of
I by |I|, that is, |I| = 1

2π

∫
I
|dξ|. For an arc I ⊆ ∂D, the Carleson square based

on I is defined by

S(I) :=

{
z ∈ D : 1− |I| ≤ |z| < 1,

z

|z|
∈ I
}
.

If I = ∂D, then we set S(I) = D. Let µ be a positive Borel measure on D. For
0 ≤ α <∞, 0 < s <∞, we say that µ is an α-logarithmic s-Carleson measure
if there exists a constant C > 0 such that for all arcs I ⊆ ∂D,

µ(S(I)) ≤ C |I|s

(log 2
|I| )

α
.

If α = 0, then µ is called an s-Carleson measure. If α = 0 and s = 1, then µ
is said to be a Carleson measure. Recall that an f ∈ H1 belongs to the space
BMOA if and only if the positive Borel measure |f ′(z)|2(1 − |z|2)dA(z) is a
Carleson measure.

Let (X, ‖ · ‖X) be a normed space of analytic functions. Then a positive
Borel measure µ on D is said to be an s-Carleson measure for X, if there exists
a constant C > 0 such that for all f ∈ X,∫

D
|f(z)|sdµ(z) ≤ C‖f‖sX .

The following lemma can be found in Theorem 2 of [17], which plays an im-
portant role in the proofs of theorems.

Lemma 2.1. Suppose that 0 ≤ α <∞ and 0 < s <∞. Then a positive Borel
measure µ on D is an α-logarithmic s-Carleson measure if and only if

sup
a∈D

(
log

2

1− |a|

)α ∫
D

(
1− |a|2

|1− āz|2

)s
dµ(z) <∞.
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We will make use of the lacunary power series (also called power series with
Hadamard gaps) of a function f ∈ H(D), that is, f is of the form

f(z) =

∞∑
k=0

akz
nk , z ∈ D,

with nk+1

nk
≥ λ > 1 for all k. Several known results on lacunary power series

will be used in this paper. We put them together in the following statement,
see [1, 4, 5, 13,19].

Lemma 2.2. Suppose that 0 < p < ∞, α > −1. f ∈ H(D) which is given by
a lacunary power series, f(z) =

∑∞
k=0 akz

nk , z ∈ D. Then

(i) f ∈ Dpα if and only if
∑∞
k=0 n

p−α−1
k |ak|p <∞, and

‖f − f(0)‖pDpα �
∞∑
k=0

np−α−1
k |ak|p.

(ii) f ∈ H∞ if and only if
∑∞
k=0 |ak| <∞, and

‖f‖H∞ �
∞∑
k=0

|ak|.

(iii) f ∈ B if and only if supk |ak| <∞, and

‖f‖B � sup
k
|ak|.

The following estimate can be found in [13].

Lemma 2.3. Suppose that β > −1, s > 0 and f ∈ H(D) with f(z) =∑∞
k=1 akz

nk , z ∈ D. Then
∞∑
k=1

n
−(β+1)
k |ak|s �

∫ 1

0

(1− r)β |f(reiθ)|sdr

for all θ ∈ R.
The following lemma is useful in theory of analytic function spaces and

operator theory, see [18].

Lemma 2.4. Suppose that z ∈ D, c is real, t > −1, and

Ic,t(z) =

∫
D

(1− |w|2)t

|1− w̄z|2+t+c
dA(w).

(i) If c < 0, then as a function of z, Ic,t is bounded on D.
(ii) If c = 0, then

Ic,t(z) � log
1

1− |z|2
as |z| → 1−.

(iii) If c > 0, then

Ic,t(z) �
1

(1− |z|2)c
as |z| → 1−.
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We will use the following estimate to prove our results, which can be found
in [16].

Lemma 2.5. For s > −1, r, t > 0 with 0 < r + t − s − 2 < r, there exists a
constant C > 0 such that for any a, b ∈ D,∫

D

(1− |z|2)s

|1− āz|r|1− b̄z|t
dA(z) ≤ C

(1− |a|2)r+t−s−2
.

3. Proof of main results

Proof of Theorem 1.1. (i) First suppose that g ∈M(B ∩Dpp−2+s,B ∩D
q
q−2+s).

For any a ∈ D, let ϕa be defined by (3) and fa be defined by

fa(z) = log
1

1− āz
, z ∈ D.

A simple computation shows that sup
a∈D
‖ϕa‖B < ∞ and sup

a∈D
‖ϕa‖Dpp−2+s

< ∞.

This implies that ϕa ∈ B ∩ Dpp−2+s and sup
a∈D
‖ϕa‖Dpp−2+s∩B < ∞. We have

gϕa ∈ B ∩ Dqq−2+s and

(1− |z|2)|(gϕa)′(z)| ≤ ‖gϕa‖B
≤ ‖gϕa‖B∩Dqq−2+s

≤ ‖Mg‖ ‖ϕa‖B∩Dpp−2+s
≤ C‖Mg‖,

that is,

(1− |z|2)|g′(z)ϕa(z) + g(z)ϕ′a(z)| ≤ C‖Mg‖.

Taking z = a, using the fact that ϕa(a) = 0 and |ϕ′a(a)| = 1
1−|a|2 we get

|g(a)| ≤ C‖Mg‖,

which implies that g ∈ H∞.
It is obvious that f ′a(z) = ā

1−āz and sup
a∈D
‖fa‖B < ∞. By Lemma 2.4, there

is a constant C > 0 independent of a such that∫
D
|f ′a(z)|p(1− |z|2)p−2+sdA(z) ≤

∫
D

(1− |z|2)p−2+s

|1− āz|p
dA(z)

=

∫
D

(1− |z|2)p−2+s

|1− āz|2+p−2+s−s dA(z)

≤ C.

This implies that sup
a∈D
‖fa‖Dpp−2+s

< ∞. Hence, we have fa ∈ B ∩ Dpp−2+s and

sup
a∈D
‖fa‖B∩Dpp−2+s

<∞. So gfa ∈ B ∩ Dqq−2+s and

(1− |z|2)|(gfa)′(z)| ≤ ‖gfa‖B∩Dqq−2+s
≤ ‖Mg‖ ‖fa‖B∩Dpp−2+s

≤ C‖Mg‖.(4)
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On the other hand, since g ∈ H∞,
(1− |z|2)|g(z)f ′a(z)| ≤ ‖g‖H∞‖fa‖B ≤ C‖g‖H∞ .(5)

Combining (4) and (5) we deduce that

(1− |z|2)|g′(z)fa(z)| ≤ C(‖Mg‖+ ‖g‖H∞).

Taking z = a we obtain

(1− |a|2)|g′(a)| log
1

1− |a|2
≤ C,

which shows that g ∈ Blog. From (1) we see that g ∈M(B).
We next show that dµ(z) = |g′(z)|q(1 − |z|2)q−2+sdA(z) is a q-Carleson

measure for B ∩ Dpp−2+s. Let f ∈ B ∩ Dpp−2+s. Since g ∈ H∞, we have∫
D
|g(z)|q|f ′(z)|q(1− |z|2)q−2+sdA(z) ≤ ‖g‖qH∞‖f‖

q−p
B ‖f‖pDpp−2+s

≤ ‖g‖qH∞‖f‖
q
B∩Dpp−2+s

.(6)

Note that gf ∈ B ∩ Dqq−2+s,∫
D
|(gf)′(z)|q(1− |z|2)q−2+sdA(z) ≤ ‖gf‖qB∩Dqq−2+s

≤ ‖Mg‖q‖f‖qB∩Dpp−2+s
.

(7)

Combining (6) and (7) implies∫
D
|f(z)|q|g′(z)|q(1− |z|2)q−2+sdA(z) ≤ C(‖g‖qH∞ + ‖Mg‖q)‖f‖qB∩Dpp−2+s

.

That is, dµ(z) = |g′(z)|q(1 − |z|2)q−2+sdA(z) is a q-Carleson measure for B ∩
Dpp−2+s.

Suppose that g ∈ M(B) and dµ(z) = |g′(z)|q(1 − |z|2)q−2+sdA(z) is a q-
Carleson measure for B∩Dpp−2+s, we prove that g ∈M(B∩Dpp−2+s,B∩D

q
q−2+s).

For any f ∈ B ∩ Dpp−2+s, we have gf ∈ B. It remains to prove that gf ∈
Dqq−2+s. Since dµ(z) = |g′(z)|q(1−|z|2)q−2+sdA(z) is a q-Carleson measure for

B ∩ Dpp−2+s, there is a constant C > 0 independent of f such that∫
D
|f(z)|q|g′(z)|q(1− |z|2)q−2+sdA(z) ≤ C‖f‖qB∩Dpp−2+s

.(8)

Combining (6) and (8) we see that∫
D
|(gf)′(z)|q(1− |z|2)q−2+sdA(z) ≤ C‖f‖qB∩Dpp−2+s

,

which implies that gf ∈ Dqq−2+s.

The idea of proofs of (ii) and (iii) is similar to that of (i). For the complete-
ness of the paper, we give their proofs briefly below.

(ii) Assume that g ∈M(BMOA∩Dpp−2+s, BMOA∩Dqq−2+s). For any a ∈ D,
let ϕa and fa be defined as in the proof of (i). An easy computation shows
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that sup
a∈D
‖fa‖Dpp−2+s

< ∞. Since 1
2π

∫ 2π

0
| log 1

1−āeiθ |dθ < ∞, we have fa ∈ H1.

Since f ′a(z) = ā
1−āz , by Lemma 2.5, there exists a constant C > 0 such that∫

D
|f ′a(z)|2(1− |ϕb(z)|2)dA(z) =

∫
D

|a|2

|1− āz|2
(1− |b|2)(1− |z|2)

|1− b̄z|2
dA(z)

≤ (1− |b|2)

∫
D

1− |z|2

|1− āz|2|1− b̄z|2
dA(z)

≤ C.

Hence, the Borel measure |f ′a(z)|2(1 − |z|2)dA(z) is a Carleson measure by
Lemma 2.1, so fa ∈ BMOA. Since C is independent of a, we deduce that
sup
a∈D
‖fa‖BMOA <∞. Hence, fa ∈ BMOA∩Dpp−2+s and sup

a∈D
‖fa‖BMOA∩Dpp−2+s

< ∞. In addition, a similar argument implies g ∈ H∞. So gfa ∈ BMOA ∩
Dqq−2+s. Hence, there exists a constant C > 0 such that for any arc I,∫

S(I)

|(gfa)′(z)|2(1− |z|2)dA(z) ≤ C|I|(9)

and ∫
S(I)

|f ′a(z)|2(1− |z|2)dA(z) ≤ C|I|.(10)

Then by g ∈ H∞, (9) and (10) we obtain∫
S(I)

|g′(z)|2|fa(z)|2(1− |z|2)dA(z) ≤ C|I|.(11)

Take a = (1− |I|)eiθ, where eiθ is the center of I, then for any z ∈ S(I),

|1− āz| � 1− |a| = |I|, |fa(z)| � log
1

|I|
.

Thus (11) implies that(
log

1

|I|

)2 ∫
S(I)

|g′(z)|2(1− |z|2)dA(z) ≤ C|I|,

in other words, g ∈ BMOAlog. Therefore g ∈M(BMOA) from (2).
We turn to show that |g′(z)|q(1 − |z|2)q−2+sdA(z) is a q-Carleson measure

for BMOA∩Dpp−2+s. For every f ∈ BMOA∩Dpp−2+s, we have gf ∈ BMOA∩
Dqq−2+s and∫

D
|(gf)′(z)|q(1− |z|2)q−2+sdA(z) ≤ ‖gf‖qDqq−2+s

≤ ‖gf‖q
BMOA∩Dqq−2+s

≤ ‖Mg‖q‖f‖qBMOA∩Dpp−2+s
.(12)
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A similar argument as in the proof of (i) shows that∫
D
|g(z)|q|f ′(z)|q(1− |z|2)q−2+sdA(z) ≤ ‖g‖qH∞‖f‖

q
BMOA∩Dpp−2+s

.(13)

Combining (12) and (13) yields∫
D
|f(z)|q|g′(z)|q(1−|z|2)q−2+sdA(z) ≤ C(‖g‖qH∞+‖Mg‖q)‖f‖qBMOA∩Dpp−2+s

.

We conclude that dµ(z) = |g′(z)|q(1−|z|2)q−2+sdA(z) is a q-Carleson measure
for BMOA ∩ Dpp−2+s.

Conversely, for any f ∈ BMOA ∩ Dpp−2+s, we have gf ∈ BMOA. We only

need to prove gf ∈ Dqq−2+s. By hypothesis, there exists a constant C > 0
independent of f such that∫

D
|f(z)|q|g′(z)|q(1− |z|2)q−2+sdA(z) ≤ C‖f‖q

BMOA∩Dpp−2+s
.(14)

By (13) and (14) we obtain∫
D
|(gf)′(z)|q(1− |z|2)q−2+sdA(z) ≤ C‖f‖q

BMOA∩Dpp−2+s
.

That is, gf ∈ Dqq−2+s.

(iii) We only need to show

M(H∞ ∩ Dpp−2+s,H∞ ∩ D
q
q−2+s) ⊇ H∞ ∩ D

q
q−2+s,

since the converse is obvious.
Let g ∈ H∞ ∩ Dqq−2+s. For any f ∈ H∞ ∩ Dpp−2+s, we have gf ∈ H∞. It

remains to prove that gf ∈ Dqq−2+s. These hypothesis imply∫
D
|f(z)|q|g′(z)|q(1− |z|2)q−2+sdA(z) ≤ ‖f‖qH∞‖g‖

q
Dqq−2+s

≤ ‖f‖qH∞∩Dpp−2+s
‖g‖qDqq−2+s

and ∫
D
|g(z)|q|f ′(z)|q(1− |z|2)q−2+sdA(z) ≤ ‖g‖qH∞‖f‖

q
H∞∩Dpp−2+s

.

Hence∫
D
|(gf)′(z)|q(1− |z|2)q−2+sdA(z) ≤ C(‖g‖qDqq−2+s

+ ‖g‖qH∞)‖f‖qH∞∩Dpp−2+s
.

The proof is complete. �

Proof of Theorem 1.2. (i) Suppose that g ∈ M(B ∩ Dpp−2+s,B ∩ D
q
q−2+s) and

g 6= 0, then g ∈ B ∩ Dqq−2+s. Let

f(z) =

∞∑
k=0

akz
nk , ak = n

s−1
q

k , z ∈ D,
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with nk+1

nk
≥ λ > 1 for all k. Since

∑∞
k=1 |ak| < ∞, by Lemma 2.2 we have

f ∈ H∞ ⊆ B. It is not difficult to see that
∑∞
k=0 n

1−s
k |ak|p < ∞, Lemma 2.2

yields f ∈ Dpp−2+s. Hence f ∈ B ∩ Dpp−2+s and fg ∈ B ∩ Dqq−2+s. We have∫
D

(1− |z|2)q−2+s|(gf)′(z)|qdA(z) ≤ ‖gf‖qDqq−2+s
<∞

and ∫
D

(1− |z|2)q−2+s|g′(z)f(z)|qdA(z) ≤ ‖f‖qH∞‖g‖
q
Dqq−2+s

<∞.

These imply ∫
D

(1− |z|2)q−2+s|g(z)f ′(z)|qdA(z) <∞.(15)

On the other hand, f ′(z) =
∑∞
k=0 aknkz

nk−1, by Lemma 2.3 we see that∫ 1

0

(1− r)q−2+s|f ′(reiθ)|qdr �
∞∑
k=0

n
−(q+s−1)
k |aknk|q =∞.

Since g ∈ Dqq−2+s ⊆ Hq (see [9], p. 1877), g has a finite and nonzero radial
limit almost everywhere on the boundary of D. Thus∫ 1

0

(1− r)q−2+s|f ′(reiθ)|q|g(reiθ)|qdr =∞

for almost all θ ∈ R (see [9], p. 1878). This is in contradiction to (15).
(ii) Assume that g ∈ M(BMOA ∩ Dpp−2+s, BMOA ∩ Dqq−2+s) and g 6= 0,

then g ∈ BMOA ∩ Dqq−2+s. Let ak = (2k)
s−1
q , k = 1, 2, . . . , and

f(z) =

∞∑
k=0

akz
2k , z ∈ D.

Then f ∈ H∞ ∩ Dpp−2+s by Lemma 2.2. Hence f ∈ BMOA ∩ Dpp−2+s and

fg ∈ BMOA ∩ Dqq−2+s. So∫
D

(1− |z|2)q−2+s|(gf)′(z)|qdA(z) ≤ ‖gf‖qDqq−2+s
<∞

and ∫
D

(1− |z|2)q−2+s|g′(z)f(z)|qdA(z) ≤ ‖f‖qH∞‖g‖
q
Dqq−2+s

<∞.

We get ∫
D

(1− |z|2)q−2+s|g(z)f ′(z)|qdA(z) <∞.
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Since f ′(z) =
∑∞
k=0 2kakz

2k−1, from Lemma 2.3,∫ 1

0

(1− r)q−2+s|f ′(reiθ)|qdr �
∞∑
k=0

(2k)−(q+s−1)|ak2k|q =∞.

Therefore, for almost all θ ∈ R,∫ 1

0

(1− r)q−2+s|f ′(reiθ)|q|g(reiθ)|qdr =∞.

This is a contradiction.
(iii) Assume g ∈M(H∞∩Dpp−2+s,H∞∩D

q
q−2+s) and g 6= 0, then g ∈ H∞∩

Dqq−2+s. Let f ∈ H(D) be defined as in the proof of (i). The same argument as

in the proof of (i) shows that f ∈ H∞ ∩ Dpp−2+s. So fg ∈ H∞ ∩ Dqq−2+s, i.e.,∫
D
(1− |z|2)q−2+s|(gf)′(z)|qdA(z) ≤ ‖gf‖qDqq−2+s

.

In addition,∫
D

(1− |z|2)q−2+s|g′(z)f(z)|qdA(z) ≤ ‖f‖qH∞‖g‖
q
Dqq−2+s

.

We have ∫
D

(1− |z|2)q−2+s|g(z)f ′(z)|qdA(z) <∞.

On the other hand, by Lemma 2.3 we deduce that∫ 1

0

(1− r)q−2+s|f ′(reiθ)|qdr =∞.

This together with g ∈ Dqq−2+s ⊆ Hq yields∫ 1

0

(1− r)q−2+s|f ′(reiθ)|q|g(reiθ)|qdr =∞

for almost all θ ∈ R ([9], p. 1878). We obtain a contradiction. This finishes the
proof. �

References

[1] J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal func-

tions, J. Reine Angew. Math. 270 (1974), 12–37.
[2] J. Arazy, Multipliers of Bloch functions, University of Haifa Mathem. Public. Series, 54,

1982.

[3] L. Brown and A. L. Shields, Multipliers and cyclic vectors in the Bloch space, Michigan
Math. J. 38 (1991), no. 1, 141–146. https://doi.org/10.1307/mmj/1029004269
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