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Visualization of Affine Invariant Tetrahedrization
(Slice-Based Method for Visualizing the Structure of Tetrahedrization)

Kun Lee!

ABSTRACT

Delaunany triangulation which is the dual of Dirichlet tessellation is not affine invariant. In other words, the
triangulation is dependent upon the choice of the coordinate axes used to represent the vertices. In the same
teason, Delaunay tetrahedrization does not have an affine iveariant transformation property. In this paper, we
present a new type of tetrahedrization of spacial points sets which is wnaffected by translations, scalings,
shearings and rotations. An affine invariant tetrahedrization is discussed as a means of affine invariant 2-D tri-
angulation extended to three-dimensional tetrahedrization. A new associate norm between two points in 3-D
space is defined, The visualization of the structure of tetrahedrization can discriminate between Delaunay

tetrahedrization and affine invariant tetrahedrization.

1. Introduction

Tetrahedrizations have many applications related to
‘multivariate approximations and scientific computing;
including the finite element method and scattered
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data interpolation. In this paper, we emphasis on a
certain type of optimal tetrahedrization of the convex
hull of a set of data points which is invariant under
affine transformations in 3-D space. It means that the
way of tetrahedrization is not changed by scaling,
rotation, shearing, and translation. The above prop-
erty not enjoyed by other tetrahedrization. In many
applications, the choice of the location of the coordi-



nate axis or the choice of the units for measured data
is rather arbitrary. These choices should not affect
the final results. Unfortunately, a change of scale can
affect matters (i.e. in case of Delaunay triangulation).
We describe a criterion for tetrahedrization that is
unaffected by this arbitrary choice. An affine invariant
tetrahedrization is discussed as means of affine invariant
two-dimensional triangulation extended to three-
dimensional tetrahedrization. The problem of tetrahe-
drizing spacial data sets requires the partitioning of
the convex hull into a collection of tetrahedra with
vertices from the data set. we assume that the vertices
are distinct and that they do not all locate on a
planar.

Q is the convex hull of tetrahedra which do not
intersect each other. This definition is stated in detail
(see Figure 1).

Let QD V be a volume with a tetrahedral boundary
9 in which all vertices are in V. TH'is a set of
tetrahedra. In other words, a set TH={TH;}! of
non-degenerate, open tetrahedra is a tetrahedrization
of Q the fdllowing conditions hold:

a)V is the set of all vertices of tetrahedra in TH,

" B)T s the set of all triangles of tetrahedra in Th,
¢)every edge of a tetrahedron in TH contains only
two points from V,

d)every face of a tetrahedron in TH contains only
three points from V,

Q= U!_, TH; and

DTH,‘ ﬂ THj=¢(i #* ]').

~ - (Fig. 1) Tetrahedrization
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2. Two-Dimensional Affine Invariant
Triangulation

G. Nielson[1][2] defines the associate norm between
two points as an invariant under affine tramsform-
ation as:

viz=
P 22 —xyay
€Y et _ery 23

where det=3"2 )3 —(Z xy)z,

G) @

_)f(r;’;)’
Z:= =] ,
n
> i)
)::=L*—~, and
n
rTx= P Z_§= —
R oY - Yo
and ¥ xy=——"1— )

In other words, the distance between two points is
independent of scaling, rotation, shearing, and trans-
Iation. Therefore, the choice of units used to represent
the data docs not affect the triangulation. Figure 2.1
show 32 representative data points. Original data
points are rotated 44° clockwise, scaled by 2 in x
direction, and scaled by 0.4 in y direction. In Figure
2.2, tessellation based on affine invariant metric is
displayed. We show the triangulation from the
tessellations of Figure 2.2 in Figure 2.3. Figure 2.4
shows triangulations based on a standard Euclidean
distance. In Figure 2.3, the method of triangulation is
not changed according to an affine invariant trans-
formation. In Figure 2.4, the method of Delaunay tri-
angulation is changed according to an affine trans-

formation.
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Affine invariant tessellation

Rkl 44°
Origiand

{Fig. 2.2) Tessellations based on affine invariant metric

3. Affine Invariant Tetrahedrization

After Delaunay [3] provided an algorithm for tria-
ngulation of a two-dimensional plane, several resea-
rchers generalized the triangulation to z-dimensional
space, Watson presents the d-dimensional Delaunay
tessellation with application to Voronoi polytopes [4].
He gives an algorithm for computing the structure of
the Delaunay n-dimensional triangulation for any
stochastic array of data points. There are three main
computational parts. The first part checks all old
circumspheres against a new point. The second part
calculates the new sphere;it solves d linear equations
in.d unknowns. In the third part, all old points are

Affine invariant triangulation

Ratate 44*

(Fig. 24) Triangulations based on standard Euclidean
distance

checked against a new circumsphere.

Hazlewood describes a divide and conquer approach
to d-dime-nsional triangulations. She also discusses
the constrained tetrahedrization problems in J-dime-
nsionalspace [5]. She also describes an algorithm to
construct a tetrahedrization that incorporates speci-
fied convex, planar, and polygonal regions, including
triangles, as unions of facets of tetrahedra [6].

Edelshrunner presents an algorithm that constructs
a fetrahedrization of a se¢t P of n points by using
stepwise refinement. The algorithm has two phases.
First, it constructs the convex hull of P and a
tetrahedrization of the hull points of P. Second, it
iferatively inserts the interior poin}s by subdividing



the tetrahedron that contains such a point into four
tetrahedra {7].

Joe presents an algorithm that can comstruct the
three-dimensional Delaunay triangulation using local
transformations by starting with a special triangu-
lation[8][9]. In Joe's paper, the sphere criterion is used
for three-dimensional Delaunay triangulation. In
other words, no more than four points lie inside the
circumsphere in a ietrahedron. Delaunay triangu-
Jation does not have an affine invariant transform-

ation property. In other words, the choice of units
used to represent the data affects the tetrahedrization.

To avoid this problem, one needs to define a new way
of measuring distance that is an invariant under

affine transformation (i.e. associated norm):
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This associated norm has the property of invanance

under an affine transformation, as follows:

lp—alleey= 1T —T @Dl iran (3.2)

(v, V)air=
where,

x
ol @y=(x, 3, 2) X (v - vT)“ x|y
z

Ajﬁue Invariant Nonn (represent.y

(Fig. 3.2) Transformed data points

In Figure 3.1, 13 representalive dala opints are
displayed in 3-D space. Original data are rotated 44°
in z-axis, scaled by 1.5 in x-direction, and scaled by
0.6 in y direction. Figure 3.2 shows that the
transformed data are not changed when an affine
transformation is performed. We choose 13 data
points in 3-D space randomly. The two ellipsoids in
each figure represent points which are 0.5 and 1 unit
(s) from their center point while the radins of data
point is 0.15 units. Figure 3.3 and Figure 3.4 present
that the method of tetrahedrization based on an
affine jnvariant norm is not changed by an affine
transformation, and Delaunay tetrahedrization is

changed. Specially, botiom two pictures of figure 3.3

(Flg. 33) Comparison between affine invariant tetrahe-
drization and Delaunay(case 1)

(Fig. 3.4) Comparison between affine invariant tetrahe-
drization and Delaunay(case 2)
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show the same number of tetrahedra through sliced
section, while " {op~twe. pictures show the different
number of tetrahedra according to affine transform-— =~ -
ation (i.e. original data make 18 tetrahedra and affine

transformed data make 13 tetrahedra),

4. Visualization of Tetrahedral Domain

Computer modeling and visualization enable us to

create a mathematical model of a phenomenon that (Fig. 43) Rendering tetrahedra by using visibility

. ordering algorithm
can be displayed using dynamic computer graphics.
The resulting visualization yields new insights for us,
and these new ways of looking at the phenomenon space. In Figure 4.2, we show how difficult it is to
permit us to find trends hidden in the original data. understand the method of terahedrization through the
Many applications of visualizationcan be found in wire-frame view only. In Figurc 4.3, the tetrahedral
Nielson and Schriver’s paper[10]. . domain is rendered using a visibility ordering algor-

Figure 4.1 shows 125 scattered data points in 3-D ithm.

(Fig. 4.1) Scattered data in 3-D space

(Fig. 4.2) Wire-frame view (Fig. 45) Sliced view of a tetrahedral domain atz=0.2
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ing slicer in order to visualize the inside. of the

___intersected tetrahédral domair;__(sec Figure 4.7). This

technique has an analogous to culling in computer
graphics hidden surface removal.

The intersection between a plane and a tetrahedron

can be a point, 2 line, a triangle or a quadrilateral

(sec Figure 4.8).

(Fig. 4.6) Sliced view of a tetrahedral domain atx=02,y
=105, and z=02

In Figure 4.4 4.5, and 4.6, we show the method of
visualizing the internal tetrahedral domain by moving
a slicer interactively. In this chapter, we explain the
visualization technique for the sliced section of
domain and visibility ordering algorithms.

4.1 Sliced-Secﬁon
One may slice and cut some tetrabedra to show the

internal structure. We draw the intersection between oxsed
slicer and tetrah_edra. In our context, slicer means a Nesel o)l
plane which can cut a tetrahedral domain. We remove
tetrahedra that are passed entirely through the mov-
]
Bemel deased
—

{Fig. 4.7) Intersection plane between the slicer and the
tetrahedra (a, b, ¢, ), (b, ¢, &, g), (a, b, ¢, d), (Fig. 4.8) Four cases of intersection between nlicer and

and (a, b, d, f) tetrahedra



In the case of the quadrilateral, one has to deter-
mine the proper ordering of four points to avoid .an
incorrect drawing of -the intersection between a plane

and a tetrahedron (see Figure 4.9).

O1<x, 02 <x, and 03 < x.

(Fig- 49) Three cases of 4 points” ordering

a)If 0, is the largest angle;ordering of four points
is1,2,4,30r1,3,4,2

b)If 8, is the largest angle: ordering of four points
is1,3,2,40r1,4,2,3. _

¢)If @ is the largest angle: ordering of four points
is1,2,3,40r1,4,3,2

4.2 Visibility Ordering Algorithm

One needs to sort all the generated tetrahedra to
apply volume rendering. Several methods are used to
sort tetrahedra. Karasick’s arrangement is based on
power function order [11].

Williams introduces Meshed Polyhedra Visibility
Ordering{MPVQ) algorithm [12]. MPVO algorithm
orders the cells of any acyclic convex set of meshed
convex polyhedra based on half-space testing. MPVO
algorithm can be divided into three parts. The first
part 15 constructing adjacency graph. The second part
is determining a direction to each edge in the adjac-
ency graph. The last part is performing topological
sort of graph. MPVO algorithm can fake care of

nonconvex mesh by converting nonconvex into convex
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mesh. But, it does not perform correctly in case of
cyclic mesh. One can make parallel a topological
sorting based algorithm to effectively speed wp
computations.

4.2.1 Power Function Based Ordering

The tetrahedron closest to the viewpoint has the
smallest power function value. The power, [T (9, S),
of a point p concerning a sphere S centered at ¢ with
radius 7 is (p—c)2—7? (see Figure 4.10). An iso-surface
rendering can be fast, becanse only the tetrahedra
intersecting the iso-sutface need to be considered
when the viewpoint is changed. Power function based
ordering is helpful when animating iso-surfaces; how-
ever, it only works in the case of Delaunay triangn-
lation,

(Fig. 4.10) Visibility ordering based on power function

4.2.2 Half-Space Testing Based Ordering

One represents the ordering relation by an arrow
through the interior faces of tetrahedra. One dete-
mmines the direction of the arrow by using half-space
testing. There are three steps required to implement
this idea.

a) Construct Adjacency Graph

This data structure provides the following infor-
mation (see Figure 4.11, Figure 4.12, and Figure 4.13)
:the identification (ID) of the tetrahedron that shares
the common face, directional information for each
behind relation (i.e. inbound, outbound and none),

and coefficients of the plane equations containing 3
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vertices of each common face G.e. pelx, y, 2)=ax+
by + cz + d).

b)Convert Adjacency Graph to Directed Acyclic
Graph

One connecis each face with the behind relation.

(see Figure 4.14). The common face is extended into a

po

* view point

(Fig- 4.11) Three adjacent tetrahedra

tetrahedron ID : O

data structure of tetrahedron ID :0
tewaf0][0]=p0"

1etra(0}{1 1= pi

tera[0][2 | =p2

tetraf0][3 1=p3

tetra[0][4 ] = 1 adjacent tetra (P1,p2,p3) ID
tewrafO}{5 | = -1 adjacent tetra (p0,p2,p3) ID
tetra[O}{6 | = -1 adjacent tetra (p0,p1,p3) ID
tetraf[0][7 ] =-1 adjacent tetra (p0,pl,p2) ID
tetraf0](8 ] = 1 (inbound relationship)
tetrafO}{9 j = 0 (no exterior face)

tetraf0}{ 10] = O (no extenior face)
tetraf0]{11]= O (no exterior face)
tetra[0][12] = 0 (no imaginary face)
tetra[0][13] = 0 (no visited)

tetra[0]{14] = 0 (no visited on this descent)
tetraf0][15] = 1 (number of inbound 0 cell)

{Fig. 4.12) Tetrahedron ID : 0 and its data structure

plane, which separates two half-spaces. Each half-space
contains one of the fetrahedral objects. If we represent
the behind relation by an arrow through the shared
face, then the direction of the arrow is towards the
tetrahedral object contained in the viewpoint half
space.

c) Perform topological sorting

One can use Depth-First-Search (DFS) or Breadth-
First-Search (BFS) for sorting tetrahedral objects.

1)DFS: Find all sink nodes, that have no outbound
arrows. Place these nodes on a list called the sink cell
list. DFS yields a reversed topological sort of the
nodes. It will generate all tetrahedra regardless of the

existence of cycles.

tetrahedron ID : 1

pl

tetrahedron ID : 2

pd

p5

p2
(Fig. 4.13) Tetrahedron ID: 1.and 1D : 2
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i) BFS: Count the number of inbound arrows for
each cell and find all the source nodes, those nodes @
which have no inbound arrows. Put them in a queue, -
called the source cell queue. A parallel algorithm may

increase the computational speed.

(Fig. 4.16) Visibility ordering graph of power function
. based method

source list: {2} o

sink list : {0}

(Fig. 4.14) Directed acyclic graph of three tetrahedra ° o

g& (Fig. 4.17) Visibility ordering graph of DFS based method _

(0
mL o
(Fig. 4.18) Visibility ordering graph of BFS based method
) .

We compare various visibility ordering methods

o# through examples (see Figure 4.15). We show each

visibility ordering graph of power function, Depth-

First-Search, and Breadth-First-Search, corresponding

(Fig. 4.15) Four tetrahedra for comparison of visibility to Figure 4.16, Figure 4.17, and Figure 4.18, respect-

ordering methods ively. ot
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420 and 4.21 show that other visibility ordering
methods have no such difficulty with rendering. Visi-
bility ordering means that the objects are sorted in
terms of distance from a view point. Foe example, a
visibility ordering of a set of objects from a viewpoint
an ordering such if object A obstructs object B, then
B proceeds A in the order.

5. Conclusions

(Fig. 4.19) Power function based visibility ordering The affine invariant tetrahedrization method is
studied as a means of an affine invariant triangu-
lation extended 1o three-dimension. Affine invariant
, ’ : —— _ tetrahedrization has an affine invariant transform-
Ordﬂing {Depth First Search based) - . ation property. It means that the way of tetrahe-
\ ‘ o - - drization does mot changed by scaling. rotation,

shearing, and translation.

In many applications, the choice of the location of
coordinate axis or the choice of the umits for
measured data is rather arbitrary. We describe a cri-
terion for tetrahedrization that is unaffected by this
arbitrary choice. A new associate norm between two
points in 3-D space is defined and used in a criterion.
Affine invariant tetrahedrization can be used in case

of scaling conversion. For example, some data whose

units of measurements are inches and seconds need to

— ’ be changed to feed and minutes. The result of affine

2 W Ordering (Breadth First Seach based)™ - invariant tetrahedrization remains as same while
Co D T uLdemdd . . other tetrahedrization does not.

The visualization of tetrahedrization (ie. fetrahedral
domain, representative data points and transformed
data points) can be helpful to understand the differ-
ence between Delaunay tetrahedrization and affine

invariant tetrahedrization.
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