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EXISTENCE OF SOLUTIONS FOR GRADIENT TYPE
ELLIPTIC SYSTEMS WITH LINKING METHODS

Yinghua Jin* and Q-Heung Choi**

Abstract. We study the existence of nontrivial solutions of the
Gradient type Dirichlet boundary value problem for elliptic systems
of the form −∆U(x) = ∇F (x, U(x)),x ∈ Ω, where Ω ⊂ RN (N ≥ 1)
is a bounded regular domain and U = (u, v) : Ω → R2. To study
the system we use the liking theorem on product space.

1. Introduction

The elliptic system has an extensive practical background. It can
be used to describe the multiplicate chemical reaction catalyzed by the
catalyst grains under constant or variant temperature, and can be a
simple model of tubular chemical reaction, more naturally, it can be a
correspondence of the stable station of dynamical system determined by
the reaction-diffusion system(see [3]).

Second order elliptic systems whose principal part is given by the
differential operator −∆, where ∆ := ∂2

∂x2
1

+ · · · + ∂2

∂x2
N

, and we will
discuss systems of the form

−∆u = f(x, u, v),−∆v = g(x, u, v) in Ω.

We say that the system above is of Gradient type if there exists a func-
tion F : Ω̄×R×R → R of class C1 such that

∂F

∂u
= f,

∂F

∂v
= g.

The above system is said to be of Hamiltonean type if there exists a
function H : Ω̄×R×R → R of class C1 such that

∂H

∂v
= f,

∂H

∂u
= g.
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In this paper we study the existence of nontrivial solutions of a Gra-
dient type elliptic systems of the following form

−∆U(x) = ∇F (x,U(x)) in Ω,

U(x) = 0 in ∂Ω,
(1.1)

where Ω ⊂ Rn is a bounded regular domain, and there exists a function
f1(x, u, v), f2(x, u, v) such that

∇F (x, u, v) =
( ∂

∂u
F (x, u, v),

∂

∂v
F (x, u, v)

)
= (f1(x, u, v), f2(x, u, v)).

without loss of generality, we set

F (x, u, v) =
∫ (u,v)

(0,0)
f1(x, u, v)du + f2(x, u, v)dv,

where , f1(x, u, v), f2(x, u, v) are Caratheodory functions.
In this paper, we first obtain some abstract linking theorems on prod-

uct space. As an application, we consider the existence of two nontrivial
solutions of the elliptic systems (1.1).

2. Preliminaries

We shall work in the functional space H ×H where H := W 1,2
0 (Ω).

We shall endow H ×H with the Hilbert structure induced by the inner
product

(U, V )H×H =
∫

Ω
∇u(x)∇φ(x)dx +

∫

Ω
∇v(x)∇ϕ(x)dx,

where U = (u, v), V = (φ, ϕ). We denote the corresponding norm by
‖ · ‖. We define the energy functional associated to (1.1) as

I(u, v) =
1
2

∫

Ω
(|∇u|2 + |∇v|2)dx−

∫

Ω
F (x, u, v)dx.

Let C1(H, R) denote the set of all functionals which are Fréchet differen-
tiable and whose Fréchet derivatives are continuous on H. It is easy to
see that I ∈ C1(H ×H, R) and thus it makes sense to lock for solutions
to (1.1) in the weak sense as critical points for I, i.e. U = (u, v) ∈ H×H
such that I ′(u, v) = 0, where

I ′(U)V =
∫

Ω
[∇u(x)∇φ(x) +∇v(x)∇ϕ(x)− (f1φ(x) + f2ϕ(x))]dx,

I ′(U)V = 〈∇I(u, v), (φ, ϕ)〉H×H , ∀V = (φ, ϕ) ∈ H.
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It is interesting that the concept of linking is of important in critical
point theory.To the average person two objects are said to be linked if
they cannot be pulled apart. This is basically the idea we shall use in
finding critical points. Let E be a Banach space. We introduce the set
Φ of mapping Γ(t) ∈ C(E × [0, 1], E) with the following properties:

• for each t ∈ [0, 1), Γ(t) is a homeomorphism of E onto itself and
Γ(t)−1 is continuous on E × [0, 1)

• Γ(0) = I
• for each Γ(t) ∈ Φ there is a u0 ∈ E such that Γ(1)u = u0 for all

u ∈ E and Γ(t)u → u0 as t → 1 uniformly on bounded subsets of
E.

Definition 2.1. A subset a of E links a subset B of E if A ∩B = ∅
and for each Γ(t) ∈ Φ, there is a t ∈ (0, 1] such that Γ(t)A ∩B 6= ∅.

Let λk denote the eigenvalues and ek the corresponding eigenfunc-
tions, suitably normalized with respect to L2(Ω) inner product, of the
eigenvalue problem ∆u + λu = 0 in Ω, with Dirichlet boundary condi-
tion, where each eigenvalue λk is repeated as often as its multiplicity.
We recall that 0 < λ1 < λ2 ≤ λ3 ≤ · · · , λi → +∞ and that e1 > 0
for all x ∈ Ω. To introduce a variation of linking theorem on product
space, we define the following sets. Let M be a Hilbert space and V a
C2 complete connected Finsler manifold. Suppose M = M1⊕M2 where
M1 are finite dimensional subspaces of M . Let 0 < δ < R, e1 ∈ M1

moreover, consider

QR = {se1 + u : u ∈ M2, s ≥ 0‖se1 + u‖ ≤ R},
Sδ = Bδ ∩M1,

then ∂QR links ∂Sδ.
We recall a theorem of existence of two critical levels for a functional

which is a linking theorem on product space.

Theorem 2.2. Suppose

sup
∂Sδ×V

I < inf
∂QR×V

I

inf
QR×V

I > −∞, sup
Sδ×V

I < +∞,

and that I satisfies (PS)∗c with respect to X, for every

c ∈ [ inf
QR×V

I, sup
Sδ×V

I].
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Then I admits at least two distinct critical values c1, c2 such that

inf
QR×V

I ≤ c1 ≤ sup
∂Sδ×V

I < inf
∂QR×V

I ≤ c2 ≤ sup
Sδ×V

I,

and at least 2 + 2 cuplength(V ) distinct critical points.

3. An application

We consider the following assumptions:
(f1) There exist α > 2 and R > 0 such that, for all uv 6= 0 and

‖u‖+ ‖v‖ > R a.e. x ∈ Ω,

f1(x, u, v)u + f2(x, u, v)v ≥ αF (x, u, v) > 0.

(f2) there are p ∈ (1, 2∗), q ∈ (2,∞) such that for all (x,U),

F (x,U) ≥ γ1(|u|p + |v|q)− γ2.

(f3) When |v| → 0,
f2(0, v)

v2
→ 0.

A critical point of I is a solution U of (1.1) and the value of I at
U is a critical value of I. Ekeland’s variational principle implies the
existence of a sequence (Um) such that I(Un) → c, I′(Un) → 0. Such a
sequence is called a Palais-Smale sequence at level c. The functional I
satisfies the (PS)c condition if any Palais-Smale sequence at level c has
a convergent subsequence. If I is bounded from below and satisfies the
(PS)c condition at level c, then c is a critical value of I. Following we
prove that the functional I satisfies the (PS)c condition.

Lemma 3.1. If (f1), (f2), (f3) hold. Then functional I(u, v) satisfies
the (PS)c condition.

Proof. Let {Un} = {(un, vn)} be a sequence in E = H × H such
that |I(Un)| ≤ C and I ′(Un) → 0 as n → ∞. First we prove that
{Un} = {(un, vn)} is bounded. Choose β ∈ (α−1, 2−1). For large n, by
condition H1 we have

C0 + o(1)‖Un‖ ≥ I(Un)− β〈∇I(Un), Un)〉H×H

= (
1
2
− β)‖Un‖2 −

∫

Ω
F (Un)dx

+β

∫

Ω
(f1(Un)un + f2(Un)vn)dx

≥ (
1
2
− β)‖Un‖2 + (βα− 1)

∫

Ω
F (Un)dx.
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We obtain
C0 + o(1)‖Un‖ ≥ (

1
2
− β)‖Un‖2,

where o(1) → 0 as n → ∞. This implies that {Un} is bounded in E.
Hence there exists a subsequence {Ukj}∞j=1 and U ∈ E, with Ukj → U

weakly in E, and {Ukj}∞j=1 in Lp × Lp for 1 ≤ p < 2∗, by the Rellich-
Kondrachov compactness theorem. We can compute that ‖Ukj‖ → ‖U‖,
so Ukj → U in H ×H and thus I satisfies (PS) condition.

Let W = H1
0 ×{0} = span{e−i , i ∈ N}, Z = {0}×H1

0 = span{e+
i , i ∈

N}, where e±i are the eigenfunctions associated to λ±i = ±λi(−∆)
(where λi(−∆) denotes the ith eigenvalue of the Laplace operator on
H1

0 , with associated the eigenfunction ei) and e+
i = (0, ei), e−i = (ei, 0).

From now on ‖ · ‖ will denote the H1
0 norm.

Theorem 3.2. Suppose (f1), (f2), (f3) holds. Then problem (1.1)
has at least two nontrivial solutions.

Proof. In fact, by (f1), (f2), for every u ∈ W

I(u,Re+
1 ) =

1
2

∫

Ω
(|∇u|2 + |∇Re+

1 |
2)dx−

∫

Ω
F (x, u, Re+

1 )dx,

≤ 1
2
‖u‖2 +

1
2
λ1R

2 −
∫

Ω
F (x, u, Re1)dx,

≤ 1
2
‖u‖2 +

1
2
λ1R

2 −
∫

Ω
[γ1(|u|p + |Re1|q)− γ2]dx,

since q > 2, by standard inequalities there exist a R? > 0 such that for
R > R? we have supW⊕Re+

1
I < 0.

Given ε > 0, by (f3) there exists a ρ > 0 such that, for every v ∈
Z ª e+

1 with ‖v‖ < ρ we have

I(0, v) =
1
2

∫

Ω
(|∇v|2 −

∫

Ω
F (x, 0, v)dx,

≥ 1
2
‖v‖2 − ε‖v‖2,

> 0.

Thus we have 0 < inf∂Bρ(Zªe+
1 ) I.

We can apply Theorem 2.1 with Bρ × V = Bρ(Z ª e+
1 ), QR × V =

W ⊕Re+
1 . Indeed we can find R > 0, ρ > 0 such that R > ρ > 0 and

sup
∂QR×V

I < 0 < inf
∂Bρ×V

I,
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By Theorem 2.1, I(u, v) has at least two nonzero critical value c1, c2

c1 < sup
∂QR×V

I < 0 < inf
∂Bρ×V

I < c2.

Therefore, (1.1) has at least two nontrivial solutions.
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