• Title/Summary/Keyword: skew-ring

Search Result 66, Processing Time 0.024 seconds

SKEW n-DERIVATIONS ON SEMIPRIME RINGS

  • Xu, Xiaowei;Liu, Yang;Zhang, Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1863-1871
    • /
    • 2013
  • For a ring R with an automorphism ${\sigma}$, an n-additive mapping ${\Delta}:R{\times}R{\times}{\cdots}{\times}R{\rightarrow}R$ is called a skew n-derivation with respect to ${\sigma}$ if it is always a ${\sigma}$-derivation of R for each argument. Namely, if n - 1 of the arguments are fixed, then ${\Delta}$ is a ${\sigma}$-derivation on the remaining argument. In this short note, from Bre$\check{s}$ar Theorems, we prove that a skew n-derivation ($n{\geq}3$) on a semiprime ring R must map into the center of R.

CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS

  • Cheon, Jeoung-Soo;Kim, Eun-Jeong;Lee, Chang-Ik;Shin, Yun-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.277-290
    • /
    • 2011
  • We show that the ${\theta}$-prime radical of a ring R is the set of all strongly ${\theta}$-nilpotent elements in R, where ${\theta}$ is an automorphism of R. We observe some conditions under which the ${\theta}$-prime radical of coincides with the prime radical of R. Moreover we characterize elements in prime radicals of skew Laurent polynomial rings, studying (${\theta}$, ${\theta}^{-1}$)-(semi)primeness of ideals of R.

SKEW CYCLIC CODES OVER 𝔽p + v𝔽p + v2𝔽p

  • Mousavi, Hamed;Moussavi, Ahmad;Rahimi, Saeed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1627-1638
    • /
    • 2018
  • In this paper, we study an special type of cyclic codes called skew cyclic codes over the ring ${\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p$, where p is a prime number. This set of codes are the result of module (or ring) structure of the skew polynomial ring (${\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p$)[$x;{\theta}$] where $v^3=1$ and ${\theta}$ is an ${\mathbb{F}}_p$-automorphism such that ${\theta}(v)=v^2$. We show that when n is even, these codes are either principal or generated by two elements. The generator and parity check matrix are proposed. Some examples of linear codes with optimum Hamming distance are also provided.

ON CLEAN AND NIL CLEAN ELEMENTS IN SKEW T.U.P. MONOID RINGS

  • Hashemi, Ebrahim;Yazdanfar, Marzieh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.57-71
    • /
    • 2019
  • Let R be an associative ring with identity, M a t.u.p. monoid with only one unit and ${\omega}:M{\rightarrow}End(R)$ a monoid homomorphism. Let R be a reversible, M-compatible ring and ${\alpha}=a_1g_1+{\cdots}+a_ng_n$ a non-zero element in skew monoid ring $R{\ast}M$. It is proved that if there exists a non-zero element ${\beta}=b_1h_1+{\cdots}+b_mh_m$ in $R{\ast}M$ with ${\alpha}{\beta}=c$ is a constant, then there exist $1{\leq}i_0{\leq}n$, $1{\leq}j_0{\leq}m$ such that $g_{i_0}=e=h_{j_0}$ and $a_{i_0}b_{j_0}=c$ and there exist elements a, $0{\neq}r$ in R with ${\alpha}r=ca$. As a consequence, it is proved that ${\alpha}{\in}R*M$ is unit if and only if there exists $1{\leq}i_0{\leq}n$ such that $g_{i_0}=e$, $a_{i_0}$ is unit and aj is nilpotent for each $j{\neq}i_0$, where R is a reversible or right duo ring. Furthermore, we determine the relation between clean and nil clean elements of R and those elements in skew monoid ring $R{\ast}M$, where R is a reversible or right duo ring.

ON STRONG REVERSIBLE RINGS AND THEIR EXTENSIONS

  • Baser, Muhittin;Kwak, Tai Keun
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.119-132
    • /
    • 2010
  • P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for $a,b{\in}R$. In this paper, we study an extension of a reversible ring with its endomorphism. An endomorphism ${\alpha}$ of a ring R is called strong right (resp., left) reversible if whenever $a{\alpha}(b)=0$ (resp., ${\alpha}(a)b=0$) for $a,b{\in}R$, ba = 0. A ring R is called strong right (resp., left) ${\alpha}$-reversible if there exists a strong right (resp., left) reversible endomorphism ${\alpha}$ of R, and the ring R is called strong ${\alpha}$-reversible if R is both strong left and right ${\alpha}$-reversible. We investigate characterizations of strong ${\alpha}$-reversible rings and their related properties including extensions. In particular, we show that every semiprime and strong ${\alpha}$-reversible ring is ${\alpha}$-rigid and that for an ${\alpha}$-skew Armendariz ring R, the ring R is reversible and strong ${\alpha}$-reversible if and only if the skew polynomial ring $R[x;{\alpha}]$ of R is reversible.

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

SKEW CYCLIC CODES OVER Fp + vFp

  • Gao, Jian
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.337-342
    • /
    • 2013
  • In this paper, we study a special class of linear codes, called skew cyclic codes, over the ring $R=F_p+vF_p$, where $p$ is a prime number and $v^2=v$. We investigate the structural properties of skew polynomial ring $R[x,{\theta}]$ and the set $R[x,{\theta}]/(x^n-1)$. Our results show that these codes are equivalent to either cyclic codes or quasi-cyclic codes. Based on this fact, we give the enumeration of distinct skew cyclic codes over R.

On n-skew Lie Products on Prime Rings with Involution

  • Ali, Shakir;Mozumder, Muzibur Rahman;Khan, Mohammad Salahuddin;Abbasi, Adnan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.43-55
    • /
    • 2022
  • Let R be a *-ring and n ≥ 1 be an integer. The objective of this paper is to introduce the notion of n-skew centralizing maps on *-rings, and investigate the impact of these maps. In particular, we describe the structure of prime rings with involution '*' such that *[x, d(x)]n ∈ Z(R) for all x ∈ R (for n = 1, 2), where d : R → R is a nonzero derivation of R. Among other related results, we also provide two examples to prove that the assumed restrictions on our main results are not superfluous.

ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

  • Alhevaz, Abdollah;Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.197-207
    • /
    • 2021
  • The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series R0[[x; α]], where R is a symmetric, α-compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of R0[[x; α]] forms an ideal of R0[[x; α]] if and only if Z(R) is an ideal of R. Also, if R is a non-reduced ring and annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R), then Z(R0[[x; α]]) is an ideal of R0[[x; α]]. Moreover, if R is a non-reduced right Noetherian ring and Z(R0[[x; α]]) forms an ideal, then annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R). Also, it is proved that the only possible diameters of the zero-divisor graph of R0[[x; α]] is 2 and 3.